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User privacy has become a major 
concern 

Make 
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Update 
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Often, users are unaware of data 
exposure 

Third-party 
Trackers 

Smart-phone 
Apps 



A growing sense 

  Privacy loss has to be brought under 
control! 

  User-owned and operated principal 
  Personal data should be stored in a local 

host (or a cloud device) under the user’s 
control. 



Motivation and problem 

  Distributed private user data is important. 
  How to make statistical queries over such 

distributed private user data while still 
preserving privacy? 
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Related work 

  Randomization 
  K-anonymity, L-diversity, T-closeness 

  Differential privacy 



Differential privacy 

  Differential privacy adds noise to the 
output of a computation (i.e., query). 

  Hides the presence or absence of a user. 
  Makes no assumptions about adversary. 
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Differential privacy in distributed setting 

Database 

Query Module 
(add noise) 

Analyst 

Data Data Data 

Analyst 

? ? ? 

Centralized Environment Distributed Environment 

Query Module 
(add noise) Fully trusted! 



Prior distributed DP designs�

  Scale poorly 
Dwork et al., EUROCRYPT’06. 

  Not tolerate churn 
Rastogi and Nath, SIGMOD’10; 
Shi et al., NDSS’11. 

  Even a single 
malicious user can 
substantially distort 
the query result 
Rastogi and Nath, SIGMOD’10; 
Shi et al., NDSS’11; 
Götz and Nath, MSR-TR’11. 
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PDDP system 

  PDDP: Practical Distributed Differential 
Privacy 
  Operates at large scale 
  Tolerates churn 
  Puts tight bound on the extent to which a 

malicious user can distort query results 



Components & assumptions 

Data Data Data 

Analyst 

Proxy (add DP noise) 

Analyst is potentially malicious 
(violating user privacy) 

Clients are user devices. 
Clients are potentially malicious 
(distorting the final results) 

Proxy is honest but curious 
1) Follows the specified protocol 
2) Tries to exploit additional info 
    that can be learned in so doing 
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Key insights – binary answer 
  How to limit query result distortion? 

  Solution: 
  Ensure that a client cannot arbitrarily 

manipulate answers. 
  Split answer’s value range into buckets. 
  Enforce a binary answer in each bucket. 

  Zero-knowledge proofs 
  Bit-cryptosystem 

X 
√ 



Key insights – binary answer 

  Query: “how old are you?” 

  4 buckets: 0~12, 13~20, 21~59, and ≥60. 
  Answers: a ‘1’ or ‘0’ per bucket. 

  30 years-old  0, 0, 1, 0 

  Malicious clients cannot substantially distort 
the query result! 



Proxy knows noise 

What if analyst publishes noisy result? 

Proxy knows 
noisy-free result 

Key insights – blind noise 

  Solution: 
  An anonymizing honest-

but-curious proxy. 
  Proxy generates additional 

binary answers in each 
bucket as differentially 
private noise. 

Data Data Data 

Analyst 

Proxy (add DP noise) 

  How to achieve differential privacy? 

Blind noise addition! 
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Step 1: query initialization 

Analyst Proxy 
Clients 

1. Query 2. Queries 

2. Select Clients 

5. Decrypt 
and Tabulate 

4. Add Noise Blindly 
3. Encrypted 

  Answers 
5. Encrypted 
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SELECT age FROM local_db 
WHERE gender=‘m’ 

Step 1: query initialization (cont.) 

  Example: age distribution among males? 

  Query: 

  Buckets: 

  # clients queried (c): 

  DP parameter (  ): 1.0 

1000 

0~12, 13~20, 21~59, and ≥60 



Step 2: query forwarding 
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Step 3: client response 
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Step 3: client response (cont.) 

  Client executes query over its local data 
and produces answer 

  A ‘1’ or ‘0’ per bucket 

  More than one bucket may contain a ‘1’ 



Step 3: client response (cont.) 

  Per-bucket answer value is individually 
encrypted with the analyst’s public key. 

  Goldwasser-Micali (GM) cryptosystem 
[Goldwasser and Micali, STOC’82] 

  Single-bit cryptosystem 
  Enforce a binary answer in each bucket 

  Very efficient 
  XOR-homomorphic 

  E(a) * E(b) = E(a    b) 



Step 4: blind noise addition 
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Step 4: blind noise addition 

  Proxy adds DP noise to each bucket. 
  Generate some additional binary answers 

(i.e., ‘0’ or ‘1’) as DP noise, called coins. 
  Coins must be unbiased. 
  Coins are encrypted with analyst’s public key. 

  How many coins needed? 

  Question: how to generate coins blindly? 

c: # clients queried 
  : DP parameter 



Coin generation 

  Straightforward approaches 

  Proxy generates coins? 
  Curious proxy could know noise-free result! 

  Clients generate coins? 
  Malicious clients could generate biased coins! 



Collaborative coin generation 

  Our approach 
  Each online client periodically generates an 

encrypted unbiased coin E(oc) 

  Proxy blindly re-flips the coin E(oc) 
  Generate an unbiased coin E(op) locally 
  Multiply E(oc) with E(op) 
  The product E(oc) * E(op) is an unbiased coin 



Collaborative coin generation�

  GM cryptosystem is XOR-homomorphic 
  E(oc) * E(op) = E(oc    op) 

  Proxy doesn’t know the actual value of 
the generated unbiased coin 
  Curious proxy cannot know noise-free result 

Possibly 
biased 

Unbiased Unbiased 



Step 5: noisy answers to analyst 

Analyst Proxy 
Clients 

1. Query 2. Queries 

2. Select Clients 

5. Encrypted 
Noisy Answers 

5. Decrypt 
and Tabulate 

4. Add Noise Blindly 
3. Encrypted 

  Answers 

  Each bucket: client answers + coins (noise) 
  In the end, analyst obtains the noisy answer 

for how many clients fall within each bucket. 
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Implementation & deployment 

  Client 
  Firefox add-on 

(9.6K LOC) 
  SQLite storage 

Available at http://www.mpi-sws.org/~rchen/pddp/pddpFX.xpi 



Implementation & deployment 

  Proxy 
  Web service on Tomcat (3.6K LOC) 
  Proxy state in MySQL database 

  Analyst 
  Java program (800 LOC) 

  Deployment 
  600+ real clients 



Client performance 
  Major concern: crypto operations 
  Performance at client 

Firefox Chrome Smart phone 
2157.96 22773.86 808.87 

# encryptions / second 



Proxy/analyst performance 

  Example: 
  1M clients, 10 buckets, and   = 1.0 
  Computation: < 30 CPU-minutes 

  Bandwidth and storage: 1.2GB 

Encryption Decryption Homomorphic Op 
15323.32 6601.10 123609.39 

# operations / second 



Query exercise�

  5 queries towards client deployment 

  Many low-activity clients 
  30% of clients visited ≤10 webpages 

  Many clients visited just a few websites 
  47% of clients visited ≤10 websites 

  Most browsing on a user’s top 3 favorite websites 
  Search engine is often used 
  Google ads are shown relatively often 
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Conclusion 
  PDDP: the first practical distributed 

differentially private (query) system 
  Scales well 
  Tolerates churn 
  Places tight bound on malicious user’s 

capability 

  Key insights: 
  Binary answer in bucket 
  Blind noise addition 


