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User privacy has become a major 
concern 
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Often, users are unaware of data 
exposure 
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Trackers 
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Apps 



A growing sense 

  Privacy loss has to be brought under 
control! 

  User-owned and operated principal 
  Personal data should be stored in a local 

host (or a cloud device) under the user’s 
control. 



Motivation and problem 

  Distributed private user data is important. 
  How to make statistical queries over such 

distributed private user data while still 
preserving privacy? 
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Related work 

  Randomization 
  K-anonymity, L-diversity, T-closeness 

  Differential privacy 



Differential privacy 

  Differential privacy adds noise to the 
output of a computation (i.e., query). 

  Hides the presence or absence of a user. 
  Makes no assumptions about adversary. 
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Differential privacy in distributed setting 
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Query Module 
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Prior distributed DP designs�

  Scale poorly 
Dwork et al., EUROCRYPT’06. 

  Not tolerate churn 
Rastogi and Nath, SIGMOD’10; 
Shi et al., NDSS’11. 

  Even a single 
malicious user can 
substantially distort 
the query result 
Rastogi and Nath, SIGMOD’10; 
Shi et al., NDSS’11; 
Götz and Nath, MSR-TR’11. 
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PDDP system 

  PDDP: Practical Distributed Differential 
Privacy 
  Operates at large scale 
  Tolerates churn 
  Puts tight bound on the extent to which a 

malicious user can distort query results 



Components & assumptions 

Data Data Data 

Analyst 

Proxy (add DP noise) 

Analyst is potentially malicious 
(violating user privacy) 

Clients are user devices. 
Clients are potentially malicious 
(distorting the final results) 

Proxy is honest but curious 
1) Follows the specified protocol 
2) Tries to exploit additional info 
    that can be learned in so doing 
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Key insights – binary answer 
  How to limit query result distortion? 

  Solution: 
  Ensure that a client cannot arbitrarily 

manipulate answers. 
  Split answer’s value range into buckets. 
  Enforce a binary answer in each bucket. 

  Zero-knowledge proofs 
  Bit-cryptosystem 

X 
√ 



Key insights – binary answer 

  Query: “how old are you?” 

  4 buckets: 0~12, 13~20, 21~59, and ≥60. 
  Answers: a ‘1’ or ‘0’ per bucket. 

  30 years-old  0, 0, 1, 0 

  Malicious clients cannot substantially distort 
the query result! 



Proxy knows noise 

What if analyst publishes noisy result? 

Proxy knows 
noisy-free result 

Key insights – blind noise 

  Solution: 
  An anonymizing honest-

but-curious proxy. 
  Proxy generates additional 

binary answers in each 
bucket as differentially 
private noise. 

Data Data Data 

Analyst 

Proxy (add DP noise) 

  How to achieve differential privacy? 

Blind noise addition! 
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Step 1: query initialization 
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SELECT age FROM local_db 
WHERE gender=‘m’ 

Step 1: query initialization (cont.) 

  Example: age distribution among males? 

  Query: 

  Buckets: 

  # clients queried (c): 

  DP parameter (  ): 1.0 

1000 

0~12, 13~20, 21~59, and ≥60 



Step 2: query forwarding 
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Step 3: client response 
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Step 3: client response (cont.) 

  Client executes query over its local data 
and produces answer 

  A ‘1’ or ‘0’ per bucket 

  More than one bucket may contain a ‘1’ 



Step 3: client response (cont.) 

  Per-bucket answer value is individually 
encrypted with the analyst’s public key. 

  Goldwasser-Micali (GM) cryptosystem 
[Goldwasser and Micali, STOC’82] 

  Single-bit cryptosystem 
  Enforce a binary answer in each bucket 

  Very efficient 
  XOR-homomorphic 

  E(a) * E(b) = E(a    b) 



Step 4: blind noise addition 

Analyst Proxy 
Clients 

1. Query 2. Queries 

2. Select Clients 

5. Decrypt 
and Tabulate 

4. Add Noise Blindly 
3. Encrypted 

  Answers 
5. Encrypted 

Noisy Answers 



Step 4: blind noise addition 

  Proxy adds DP noise to each bucket. 
  Generate some additional binary answers 

(i.e., ‘0’ or ‘1’) as DP noise, called coins. 
  Coins must be unbiased. 
  Coins are encrypted with analyst’s public key. 

  How many coins needed? 

  Question: how to generate coins blindly? 

c: # clients queried 
  : DP parameter 



Coin generation 

  Straightforward approaches 

  Proxy generates coins? 
  Curious proxy could know noise-free result! 

  Clients generate coins? 
  Malicious clients could generate biased coins! 



Collaborative coin generation 

  Our approach 
  Each online client periodically generates an 

encrypted unbiased coin E(oc) 

  Proxy blindly re-flips the coin E(oc) 
  Generate an unbiased coin E(op) locally 
  Multiply E(oc) with E(op) 
  The product E(oc) * E(op) is an unbiased coin 



Collaborative coin generation�

  GM cryptosystem is XOR-homomorphic 
  E(oc) * E(op) = E(oc    op) 

  Proxy doesn’t know the actual value of 
the generated unbiased coin 
  Curious proxy cannot know noise-free result 

Possibly 
biased 

Unbiased Unbiased 



Step 5: noisy answers to analyst 

Analyst Proxy 
Clients 

1. Query 2. Queries 

2. Select Clients 

5. Encrypted 
Noisy Answers 

5. Decrypt 
and Tabulate 

4. Add Noise Blindly 
3. Encrypted 

  Answers 

  Each bucket: client answers + coins (noise) 
  In the end, analyst obtains the noisy answer 

for how many clients fall within each bucket. 
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Implementation & deployment 

  Client 
  Firefox add-on 

(9.6K LOC) 
  SQLite storage 

Available at http://www.mpi-sws.org/~rchen/pddp/pddpFX.xpi 



Implementation & deployment 

  Proxy 
  Web service on Tomcat (3.6K LOC) 
  Proxy state in MySQL database 

  Analyst 
  Java program (800 LOC) 

  Deployment 
  600+ real clients 



Client performance 
  Major concern: crypto operations 
  Performance at client 

Firefox Chrome Smart phone 
2157.96 22773.86 808.87 

# encryptions / second 



Proxy/analyst performance 

  Example: 
  1M clients, 10 buckets, and   = 1.0 
  Computation: < 30 CPU-minutes 

  Bandwidth and storage: 1.2GB 

Encryption Decryption Homomorphic Op 
15323.32 6601.10 123609.39 

# operations / second 



Query exercise�

  5 queries towards client deployment 

  Many low-activity clients 
  30% of clients visited ≤10 webpages 

  Many clients visited just a few websites 
  47% of clients visited ≤10 websites 

  Most browsing on a user’s top 3 favorite websites 
  Search engine is often used 
  Google ads are shown relatively often 
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Conclusion 
  PDDP: the first practical distributed 

differentially private (query) system 
  Scales well 
  Tolerates churn 
  Places tight bound on malicious user’s 

capability 

  Key insights: 
  Binary answer in bucket 
  Blind noise addition 


