
Towards Statistical Queries over
Distributed Private User Data

Ruichuan Chen (MPI-SWS)
Alexey Reznichenko (MPI-SWS)
Paul Francis (MPI-SWS)
Johannes Gehrke (Cornell Univ.)

User privacy has become a major
concern

Make
Purchase

Update
Profile

Often, users are unaware of data
exposure

Third-party
Trackers

Smart-phone
Apps

A growing sense

  Privacy loss has to be brought under
control!

  User-owned and operated principal
  Personal data should be stored in a local

host (or a cloud device) under the user’s
control.

Motivation and problem

  Distributed private user data is important.
  How to make statistical queries over such

distributed private user data while still
preserving privacy?

Data Data Data

Analyst

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

Related work

  Randomization
  K-anonymity, L-diversity, T-closeness

  Differential privacy

Differential privacy

  Differential privacy adds noise to the
output of a computation (i.e., query).

  Hides the presence or absence of a user.
  Makes no assumptions about adversary.

Database
Query Module

(add noise)
Analyst

Differential privacy in distributed setting

Database

Query Module
(add noise)

Analyst

Data Data Data

Analyst

? ? ?

Centralized Environment Distributed Environment

Query Module
(add noise) Fully trusted!

Prior distributed DP designs�

  Scale poorly
Dwork et al., EUROCRYPT’06.

  Not tolerate churn
Rastogi and Nath, SIGMOD’10;
Shi et al., NDSS’11.

  Even a single
malicious user can
substantially distort
the query result
Rastogi and Nath, SIGMOD’10;
Shi et al., NDSS’11;
Götz and Nath, MSR-TR’11.

Data Data Data

Analyst

Trusted!

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

PDDP system

  PDDP: Practical Distributed Differential
Privacy
  Operates at large scale
  Tolerates churn
  Puts tight bound on the extent to which a

malicious user can distort query results

Components & assumptions

Data Data Data

Analyst

Proxy (add DP noise)

Analyst is potentially malicious
(violating user privacy)

Clients are user devices.
Clients are potentially malicious
(distorting the final results)

Proxy is honest but curious
1) Follows the specified protocol
2) Tries to exploit additional info
 that can be learned in so doing

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

Key insights – binary answer
  How to limit query result distortion?

  Solution:
  Ensure that a client cannot arbitrarily

manipulate answers.
  Split answer’s value range into buckets.
  Enforce a binary answer in each bucket.

  Zero-knowledge proofs
  Bit-cryptosystem

X
√

Key insights – binary answer

  Query: “how old are you?”

  4 buckets: 0~12, 13~20, 21~59, and ≥60.
  Answers: a ‘1’ or ‘0’ per bucket.

  30 years-old 0, 0, 1, 0

  Malicious clients cannot substantially distort
the query result!

Proxy knows noise

What if analyst publishes noisy result?

Proxy knows
noisy-free result

Key insights – blind noise

  Solution:
  An anonymizing honest-

but-curious proxy.
  Proxy generates additional

binary answers in each
bucket as differentially
private noise.

Data Data Data

Analyst

Proxy (add DP noise)

  How to achieve differential privacy?

Blind noise addition!

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

Step 1: query initialization

Analyst Proxy
Clients

1. Query 2. Queries

2. Select Clients

5. Decrypt
and Tabulate

4. Add Noise Blindly
3. Encrypted

 Answers
5. Encrypted

Noisy Answers

SELECT age FROM local_db
WHERE gender=‘m’

Step 1: query initialization (cont.)

  Example: age distribution among males?

  Query:

  Buckets:

  # clients queried (c):

  DP parameter (): 1.0

1000

0~12, 13~20, 21~59, and ≥60

Step 2: query forwarding

Analyst Proxy
Clients

1. Query 2. Queries

2. Select Clients

3. Encrypted
 Answers

5. Decrypt
and Tabulate

4. Add Noise Blindly

5. Encrypted
Noisy Answers

Step 3: client response

Analyst Proxy
Clients

1. Query 2. Queries

2. Select Clients

3. Encrypted
 Answers

5. Decrypt
and Tabulate

4. Add Noise Blindly

5. Encrypted
Noisy Answers

Step 3: client response (cont.)

  Client executes query over its local data
and produces answer

  A ‘1’ or ‘0’ per bucket

  More than one bucket may contain a ‘1’

Step 3: client response (cont.)

  Per-bucket answer value is individually
encrypted with the analyst’s public key.

  Goldwasser-Micali (GM) cryptosystem
[Goldwasser and Micali, STOC’82]

  Single-bit cryptosystem
  Enforce a binary answer in each bucket

  Very efficient
  XOR-homomorphic

  E(a) * E(b) = E(a b)

Step 4: blind noise addition

Analyst Proxy
Clients

1. Query 2. Queries

2. Select Clients

5. Decrypt
and Tabulate

4. Add Noise Blindly
3. Encrypted

 Answers
5. Encrypted

Noisy Answers

Step 4: blind noise addition

  Proxy adds DP noise to each bucket.
  Generate some additional binary answers

(i.e., ‘0’ or ‘1’) as DP noise, called coins.
  Coins must be unbiased.
  Coins are encrypted with analyst’s public key.

  How many coins needed?

  Question: how to generate coins blindly?

c: # clients queried
 : DP parameter

Coin generation

  Straightforward approaches

  Proxy generates coins?
  Curious proxy could know noise-free result!

  Clients generate coins?
  Malicious clients could generate biased coins!

Collaborative coin generation

  Our approach
  Each online client periodically generates an

encrypted unbiased coin E(oc)

  Proxy blindly re-flips the coin E(oc)
  Generate an unbiased coin E(op) locally
  Multiply E(oc) with E(op)
  The product E(oc) * E(op) is an unbiased coin

Collaborative coin generation�

  GM cryptosystem is XOR-homomorphic
  E(oc) * E(op) = E(oc op)

  Proxy doesn’t know the actual value of
the generated unbiased coin
  Curious proxy cannot know noise-free result

Possibly
biased

Unbiased Unbiased

Step 5: noisy answers to analyst

Analyst Proxy
Clients

1. Query 2. Queries

2. Select Clients

5. Encrypted
Noisy Answers

5. Decrypt
and Tabulate

4. Add Noise Blindly
3. Encrypted

 Answers

  Each bucket: client answers + coins (noise)
  In the end, analyst obtains the noisy answer

for how many clients fall within each bucket.

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

Implementation & deployment

  Client
  Firefox add-on

(9.6K LOC)
  SQLite storage

Available at http://www.mpi-sws.org/~rchen/pddp/pddpFX.xpi

Implementation & deployment

  Proxy
  Web service on Tomcat (3.6K LOC)
  Proxy state in MySQL database

  Analyst
  Java program (800 LOC)

  Deployment
  600+ real clients

Client performance
  Major concern: crypto operations
  Performance at client

Firefox Chrome Smart phone
2157.96 22773.86 808.87

encryptions / second

Proxy/analyst performance

  Example:
  1M clients, 10 buckets, and = 1.0
  Computation: < 30 CPU-minutes

  Bandwidth and storage: 1.2GB

Encryption Decryption Homomorphic Op
15323.32 6601.10 123609.39

operations / second

Query exercise�

  5 queries towards client deployment

  Many low-activity clients
  30% of clients visited ≤10 webpages

  Many clients visited just a few websites
  47% of clients visited ≤10 websites

  Most browsing on a user’s top 3 favorite websites
  Search engine is often used
  Google ads are shown relatively often

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

Conclusion
  PDDP: the first practical distributed

differentially private (query) system
  Scales well
  Tolerates churn
  Places tight bound on malicious user’s

capability

  Key insights:
  Binary answer in bucket
  Blind noise addition

