
Towards Statistical Queries over
Distributed Private User Data

Ruichuan Chen (MPI-SWS)
Alexey Reznichenko (MPI-SWS)
Paul Francis (MPI-SWS)
Johannes Gehrke (Cornell Univ.)

User privacy has become a major
concern

Make
Purchase

Update
Profile

Often, users are unaware of data
exposure

Third-party
Trackers

Smart-phone
Apps

A growing sense

  Privacy loss has to be brought under
control!

  User-owned and operated principal
  Personal data should be stored in a local

host (or a cloud device) under the user’s
control.

Motivation and problem

  Distributed private user data is important.
  How to make statistical queries over such

distributed private user data while still
preserving privacy?

Data Data Data

Analyst

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

Related work

  Randomization
  K-anonymity, L-diversity, T-closeness

  Differential privacy

Differential privacy

  Differential privacy adds noise to the
output of a computation (i.e., query).

  Hides the presence or absence of a user.
  Makes no assumptions about adversary.

Database
Query Module

(add noise)
Analyst

Differential privacy in distributed setting

Database

Query Module
(add noise)

Analyst

Data Data Data

Analyst

? ? ?

Centralized Environment Distributed Environment

Query Module
(add noise) Fully trusted!

Prior distributed DP designs�

  Scale poorly
Dwork et al., EUROCRYPT’06.

  Not tolerate churn
Rastogi and Nath, SIGMOD’10;
Shi et al., NDSS’11.

  Even a single
malicious user can
substantially distort
the query result
Rastogi and Nath, SIGMOD’10;
Shi et al., NDSS’11;
Götz and Nath, MSR-TR’11.

Data Data Data

Analyst

Trusted!

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

PDDP system

  PDDP: Practical Distributed Differential
Privacy
  Operates at large scale
  Tolerates churn
  Puts tight bound on the extent to which a

malicious user can distort query results

Components & assumptions

Data Data Data

Analyst

Proxy (add DP noise)

Analyst is potentially malicious
(violating user privacy)

Clients are user devices.
Clients are potentially malicious
(distorting the final results)

Proxy is honest but curious
1) Follows the specified protocol
2) Tries to exploit additional info
 that can be learned in so doing

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

Key insights – binary answer
  How to limit query result distortion?

  Solution:
  Ensure that a client cannot arbitrarily

manipulate answers.
  Split answer’s value range into buckets.
  Enforce a binary answer in each bucket.

  Zero-knowledge proofs
  Bit-cryptosystem

X
√

Key insights – binary answer

  Query: “how old are you?”

  4 buckets: 0~12, 13~20, 21~59, and ≥60.
  Answers: a ‘1’ or ‘0’ per bucket.

  30 years-old  0, 0, 1, 0

  Malicious clients cannot substantially distort
the query result!

Proxy knows noise

What if analyst publishes noisy result?

Proxy knows
noisy-free result

Key insights – blind noise

  Solution:
  An anonymizing honest-

but-curious proxy.
  Proxy generates additional

binary answers in each
bucket as differentially
private noise.

Data Data Data

Analyst

Proxy (add DP noise)

  How to achieve differential privacy?

Blind noise addition!

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

Step 1: query initialization

Analyst Proxy
Clients

1. Query 2. Queries

2. Select Clients

5. Decrypt
and Tabulate

4. Add Noise Blindly
3. Encrypted

 Answers
5. Encrypted

Noisy Answers

SELECT age FROM local_db
WHERE gender=‘m’

Step 1: query initialization (cont.)

  Example: age distribution among males?

  Query:

  Buckets:

  # clients queried (c):

  DP parameter (): 1.0

1000

0~12, 13~20, 21~59, and ≥60

Step 2: query forwarding

Analyst Proxy
Clients

1. Query 2. Queries

2. Select Clients

3. Encrypted
 Answers

5. Decrypt
and Tabulate

4. Add Noise Blindly

5. Encrypted
Noisy Answers

Step 3: client response

Analyst Proxy
Clients

1. Query 2. Queries

2. Select Clients

3. Encrypted
 Answers

5. Decrypt
and Tabulate

4. Add Noise Blindly

5. Encrypted
Noisy Answers

Step 3: client response (cont.)

  Client executes query over its local data
and produces answer

  A ‘1’ or ‘0’ per bucket

  More than one bucket may contain a ‘1’

Step 3: client response (cont.)

  Per-bucket answer value is individually
encrypted with the analyst’s public key.

  Goldwasser-Micali (GM) cryptosystem
[Goldwasser and Micali, STOC’82]

  Single-bit cryptosystem
  Enforce a binary answer in each bucket

  Very efficient
  XOR-homomorphic

  E(a) * E(b) = E(a b)

Step 4: blind noise addition

Analyst Proxy
Clients

1. Query 2. Queries

2. Select Clients

5. Decrypt
and Tabulate

4. Add Noise Blindly
3. Encrypted

 Answers
5. Encrypted

Noisy Answers

Step 4: blind noise addition

  Proxy adds DP noise to each bucket.
  Generate some additional binary answers

(i.e., ‘0’ or ‘1’) as DP noise, called coins.
  Coins must be unbiased.
  Coins are encrypted with analyst’s public key.

  How many coins needed?

  Question: how to generate coins blindly?

c: # clients queried
 : DP parameter

Coin generation

  Straightforward approaches

  Proxy generates coins?
  Curious proxy could know noise-free result!

  Clients generate coins?
  Malicious clients could generate biased coins!

Collaborative coin generation

  Our approach
  Each online client periodically generates an

encrypted unbiased coin E(oc)

  Proxy blindly re-flips the coin E(oc)
  Generate an unbiased coin E(op) locally
  Multiply E(oc) with E(op)
  The product E(oc) * E(op) is an unbiased coin

Collaborative coin generation�

  GM cryptosystem is XOR-homomorphic
  E(oc) * E(op) = E(oc op)

  Proxy doesn’t know the actual value of
the generated unbiased coin
  Curious proxy cannot know noise-free result

Possibly
biased

Unbiased Unbiased

Step 5: noisy answers to analyst

Analyst Proxy
Clients

1. Query 2. Queries

2. Select Clients

5. Encrypted
Noisy Answers

5. Decrypt
and Tabulate

4. Add Noise Blindly
3. Encrypted

 Answers

  Each bucket: client answers + coins (noise)
  In the end, analyst obtains the noisy answer

for how many clients fall within each bucket.

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

Implementation & deployment

  Client
  Firefox add-on

(9.6K LOC)
  SQLite storage

Available at http://www.mpi-sws.org/~rchen/pddp/pddpFX.xpi

Implementation & deployment

  Proxy
  Web service on Tomcat (3.6K LOC)
  Proxy state in MySQL database

  Analyst
  Java program (800 LOC)

  Deployment
  600+ real clients

Client performance
  Major concern: crypto operations
  Performance at client

Firefox Chrome Smart phone
2157.96 22773.86 808.87

encryptions / second

Proxy/analyst performance

  Example:
  1M clients, 10 buckets, and = 1.0
  Computation: < 30 CPU-minutes

  Bandwidth and storage: 1.2GB

Encryption Decryption Homomorphic Op
15323.32 6601.10 123609.39

operations / second

Query exercise�

  5 queries towards client deployment

  Many low-activity clients
  30% of clients visited ≤10 webpages

  Many clients visited just a few websites
  47% of clients visited ≤10 websites

  Most browsing on a user’s top 3 favorite websites
  Search engine is often used
  Google ads are shown relatively often

Outline

  Related work

  PDDP system
  Key insights
  System workflow
  Implementation, deployment and results

  Conclusion

Conclusion
  PDDP: the first practical distributed

differentially private (query) system
  Scales well
  Tolerates churn
  Places tight bound on malicious user’s

capability

  Key insights:
  Binary answer in bucket
  Blind noise addition

