Towards Statistical Queries over Distributed Private User Data

Ruichuan Chen (MPI-SWS)

Alexey Reznichenko (MPI-SWS) Paul Francis (MPI-SWS) Johannes Gehrke (Cornell Univ.)

User privacy has become a major concern

Often, users are unaware of data exposure

A growing sense

Privacy loss has to be brought under control!

User-owned and operated principal

 Personal data should be stored in a local host (or a cloud device) under the user's control.

Motivation and problem

- Distributed private user data is important.
- How to make statistical queries over such distributed private user data while still preserving privacy?

Outline

- Related work
- PDDP system
 - Key insights
 - System workflow
 - Implementation, deployment and results

Conclusion

Related work

- Randomization
- K-anonymity, L-diversity, T-closeness
- Differential privacy

Differential privacy

Differential privacy adds noise to the output of a computation (i.e., query).

Hides the presence or absence of a user.
 Makes no assumptions about adversary.

Differential privacy in distributed setting

Centralized Environment

Distributed Environment

Prior distributed DP designs

- Scale poorly Dwork et al., EUROCRYPT'06.
- Not tolerate churn
 Rastogi and Nath, SIGMOD'10;
 Shi et al., NDSS'11.
- Even a single malicious user can substantially distort the query result
 Rastogi and Nath, SIGMOD'10; Shi et al., NDSS'11; Götz and Nath, MSR-TR'11.

Outline

Related work

PDDP system

- Key insights
- System workflow
- Implementation, deployment and results

Conclusion

PDDP system

- PDDP: Practical Distributed Differential Privacy
 - Operates at large scale
 - Tolerates churn
 - Puts tight bound on the extent to which a malicious user can distort query results

Components & assumptions

Analyst is potentially malicious (violating user privacy)

Proxy is honest but curious

- 1) Follows the specified protocol
- 2) Tries to exploit additional info that can be learned in so doing

Clients are user devices. Clients are potentially malicious (distorting the final results)

Outline

Related work

PDDP system

Key insights

- System workflow
- Implementation, deployment and results

Conclusion

Key insights – binary answer

How to limit query result distortion?

Solution:

- Ensure that a client cannot arbitrarily manipulate answers.
- Split answer's value range into buckets.
- Enforce a binary answer in each bucket.
 - Zero-knowledge proofs
 - Bit-cryptosystem

Key insights – binary answer

Query: "how old are you?"

4 buckets: 0~12, 13~20, 21~59, and ≥60.
 Answers: a `1' or `0' per bucket.
 30 years-old → 0, 0, 1, 0

 Malicious clients cannot substantially distort the query result!

Key insights – blind noise

How to achieve differential privacy?

- Spatultinglyst publishes noisy result?
 - An anonymizing honestbut-curious proxy

Broky generates additional binary answers in eachesult bucket as differentially private noise.

Blind noise addition!

Outline

Related work

- PDDP system
 - Key insights
 - System workflow
 - Implementation, deployment and results

Conclusion

Step 1: query initialization

Step 1: query initialization (cont.)

Example: age distribution among males?

Query: SELECT age FROM local_db WHERE gender=`m'

■ Buckets: 0~12, 13~20, 21~59, and ≥60

• # clients queried (c): 1000

• DP parameter (\mathcal{E}) : 1.0

Step 2: query forwarding

Step 3: client response

Step 3: client response (cont.)

- Client executes query over its local data and produces answer
 - A '1' or '0' per bucket
 - More than one bucket may contain a '1'

Step 3: client response (cont.)

- Per-bucket answer value is individually encrypted with the analyst's public key.
- Goldwasser-Micali (GM) cryptosystem
 [Goldwasser and Micali, STOC'82]
 - Single-bit cryptosystem
 - Enforce a binary answer in each bucket
 - Very efficient
 - XOR-homomorphic
 - E(a) * E(b) = E(a⊕b)

Step 4: blind noise addition

Step 4: blind noise addition

Proxy adds DP noise to each bucket.

- Generate some additional binary answers (i.e., `0' or `1') as DP noise, called coins.
 - Coins must be unbiased.
 - Coins are encrypted with analyst's public key.
- How many coins needed?

$$n = \lfloor \frac{64\ln(2c)}{\epsilon^2} \rfloor + 1$$

 $c: \text{ # clients queried}$
 $\epsilon: \text{ DP parameter}$

Question: how to generate coins blindly?

Coin generation

Straightforward approaches

Proxy generates coins?

Curious proxy could know noise-free result!

Clients generate coins?

Malicious clients could generate biased coins!

Collaborative coin generation

Our approach

- Each online client periodically generates an encrypted unbiased coin E(o_c)
- Proxy blindly re-flips the coin $E(o_c)$
 - Generate an unbiased coin $E(o_p)$ locally
 - Multiply $E(o_c)$ with $E(o_p)$
 - The product $E(o_c) * E(o_p)$ is an unbiased coin

Collaborative coin generation

■ GM cryptosystem is XOR-homomorphic □ $E(o_c) * E(o_p) = E(o_c \oplus o_p)$ ↓ ↓ ↓ ↓ ↓ Possibly Unbiased Unbiased biased

- Proxy doesn't know the actual value of the generated unbiased coin
 - Curious proxy cannot know noise-free result

Step 5: noisy answers to analyst

- Each bucket: client answers + coins (noise)
- In the end, analyst obtains the noisy answer for how many clients fall within each bucket.

Outline

Related work

PDDP system

- Key insights
- System workflow
- Implementation, deployment and results

Conclusion

Implementation & deployment

 Client
 Firefox add-on (9.6K LOC)
 SQLite storage

Available at http://www.mpi-sws.org/~rchen/pddp/pddpFX.xpi

Implementation & deployment

Proxy

- Web service on Tomcat (3.6K LOC)
- Proxy state in MySQL database
- Analyst
 - Java program (800 LOC)

Deployment 600+ real clients

Client performance

- Major concern: crypto operations
- Performance at client

Proxy/analyst performance

Encryption	Decryption	Homomorphic Op
15323.32	6601.10	123609.39

operations / second

Example:

- 1M clients, 10 buckets, and $\mathcal{E} = 1.0$
- Computation: < 30 CPU-minutes</p>
- Bandwidth and storage: 1.2GB

Query exercise

- 5 queries towards client deployment
 - Many low-activity clients
 - 30% of clients visited ≤ 10 webpages
 - Many clients visited just a few websites
 - 47% of clients visited ≤ 10 websites
 - Most browsing on a user's top 3 favorite websites
 - Search engine is often used
 - Google ads are shown relatively often

Outline

Related work

PDDP system

- Key insights
- System workflow
- Implementation, deployment and results

Conclusion

Conclusion

- PDDP: the first practical distributed differentially private (query) system
 - Scales well
 - Tolerates churn
 - Places tight bound on malicious user's capability
- Key insights:
 - Binary answer in bucket
 - Blind noise addition