
RackSched: A Microsecond-Scale Scheduler for 
Rack-Scale Computers

Hang Zhu
Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis, Ion Stoica, Xin Jin

1



Online services require low tail latency

Low tail latency: 10s~100s of microseconds

2



How to serve microsecond-scale workloads?

3

Queue

Worker cores

Dispatcher core

Request 

ØCentralized scheduling policies
ØcFCFS (centralized first-come-first-serve)
ØPS (processor sharing)

A multi-core server

Scale up
[Shinjuku, NSDI’19]



How to serve microsecond-scale workloads?

4

Scale out

Request Request 

A rack-scale computer

Scale up
[Shinjuku, NSDI’19]

Larger demands

Worker threads Worker threads Worker threadsWorker threads



Can we do centralized scheduling?

5

ØCentralized scheduling
cannot scale

Centralized
scheduler

Request 

Queue

A rack-scale computer

Worker threads Worker threads Worker threads



Our proposal: hierarchical scheduling

ØCentralized scheduling
cannot scale

ØHierarchical scheduling
ØLoad imbalance

6

Workers

Inter-server scheduler

Request 

Intra-server 
scheduler

Intra-server 
scheduler

Intra-server 
scheduler

Queue



Our proposal: hierarchical scheduling

ØCentralized scheduling
cannot scale

ØHierarchical scheduling
ØLoad imbalance
ØHead-of-line blocking

7

Workers

Inter-server scheduler

Request 

Intra-server 
scheduler

Intra-server 
scheduler

Intra-server 
scheduler

Queue
500
50 HOL blocking



Inter-server scheduler

ØScaling the inter-server 
scheduler
ØProgrammable switches

ØJoin-the-shortest-queue
(JSQ) is bufferless

ØApproximating JSQ
ØPower-of-k-choices

8

Inter-server scheduler

Request 



A distributed, client-based inter-server scheduler?

9

Workers

ØClient complexity
ØOverhead for

reconfiguration
ØWorse scheduling quality

Intra-server 
scheduler

Intra-server 
scheduler

Intra-server 
scheduler

Queue
500
50

Client nClient 2Client 1



How to realize the two-layer scheduling framework?

ØWhat is the system architecture?

ØHow to process/schedule requests based on the server loads?

ØHow to ensure request affinity?

ØHow to handle practical scheduling requirements?

10



How to realize the two-layer scheduling framework?

ØWhat is the system architecture?

ØHow to process/schedule requests based on the server loads?

ØHow to ensure request affinity?

ØHow to handle practical scheduling requirements?

11



RackSched architecture

ClientClientClient

Rack-Scale Computer

L2/L3
Routing

Intra-Server
Scheduler

Worker Threads

Request
Scheduling

Server
Tracking

Request
Affinity

Inter-Server SchedulerToR Switch

Intra-Server
Scheduler

Worker Threads

Intra-Server
Scheduler

Worker Threads

ØInter-server scheduling
ØHandle temporal load

imbalance

ØIntra-server scheduling
ØHandle head-of-line

blocking

12



ØWhat is the system architecture?

ØHow to process/schedule requests based on the server loads?

ØHow to ensure request affinity?

ØHow to handle practical scheduling requirements?

13

How to realize the two-layer scheduling framework?



Packet format

ETH IP TCP/UDP TYPE LOAD Payload

Existing Protocols RackSched Header

REQF, REQR,
REP, etc.

reserved
port #L2/L3 Routing

REQ_ID

14



Request processing

Client ToR Switch

Insert Read
ReqTable LoadTable

Server

Intra-Server
Scheduler

Client ToR Switch

Read
ReqTable LoadTable

Server

Intra-Server
Scheduler

Client ToR Switch

Remove Update
ReqTable LoadTable

Server

Intra-Server
Scheduler

Ø The 1st packet of a request

Ø The following packets of
the request

Ø The reply packets

15



Request scheduling

Match pkt.dstip == 10.0.0.1
Action meta.load_i =

array[rand_i].load
meta.ip_i =

array[rand_i].ip

0 1 2 3

1.0.0.1 1.0.0.2 1.0.0.3 1.0.0.4
20 10 30 5

Register Array

zoom-out

tree-based parallel
computation of min()

power of k choices to
sample k servers

rand1

rand2

rand3

rand4

min()

min()

min()

16



ØWhat is the system architecture?

ØHow to process/schedule requests based on the server loads?

ØHow to ensure request affinity?

ØHow to handle practical scheduling requirements?

17

How to realize the two-layer scheduling framework?



Request affinity

Req.
ID

Server
IP

1 1.0.0.1

3 1.0.0.2

h1(pkt.req_id)

Stage 1 Stage 2 Stage 3

Req.
ID

Server
IP

2 1.0.0.4
5 1.0.0.3

Req.
ID

Server
IP

4 1.0.0.4

7 1.0.0.3
6 1.0.0.2

h2(pkt.req_id) h3(pkt.req_id)

Ø Insert: iterate over stages to find an empty slot 
Ø Read: find a matched slot to read the server IP
Ø Remove: remove a completed request

18



ØWhat is the system architecture?

ØHow to process/schedule requests based on the server loads?

ØHow to ensure request affinity?

ØHow to handle practical scheduling requirements?

19

How to realize the two-layer scheduling framework?



Handling scheduling requirements

ØMulti-queue support
ØSeparate queue for each request type on each server

ØLocality and placement constraints
ØData locality
ØRequest dependency

ØResource allocation policies
ØStrict priority
ØWeighted fair sharing

Check our paper for more details

20



Implementation

ØSwitch
Ø6.5Tbps Barefoot Tofino switch
ØWritten in P4

ØServer
Ø8-core CPU and 40G NIC
ØShinjuku

ØClient
ØIntel DPDK 16.11.1

21

https://github.com/netx-repo/RackSched



Evaluation

ØDoes RackSched improve the performance?

ØDoes RackSched scale?

ØDoes RackSched benefit applications?

ØWhat is the impact of the design decisions?

ØDoes RackSched ensure request affinity?

22



Evaluation

ØDoes RackSched improve the performance?

ØDoes RackSched scale?

ØDoes RackSched benefit applications?

ØWhat is the impact of the design decisions?

ØDoes RackSched ensure request affinity?

23



Does RackSched improve the performance?

RackSched supports larger throughput with lower tail latency

24



Does RackSched improve the performance?

RackSched improves the throughput further by up to 1.44X

25



Does RackSched scale?

Ø RackSched scales out the throughput near linearly
Ø The throughput is increased without increasing the tail latency

26



Does RackSched benefit applications?

RackSched does not sacrifice any individual request type

27



Design decisions: switch scheduling policies

Ø RR: without considering the variability of service times
Ø Shortest: the herding behavior

28



Design decisions: load tracking mechanisms

Ø INT2: only track the minimal number of outstanding requests
Ø INT3: track the total service time of outstanding requests
Ø Proactive: increment and decrement the counters by the switch

29



Design decisions: comparing with 
other solutions

Ø Client(100) has nearly the same performance as Shinjuku
Ø R2P2 has head-of-line blocking

30



Conclusion

ØEmerging workloads require microsecond-scale tail latency

ØRackSched is a rack-level microsecond-scale scheduler that
achieves scalability and low tail latency
ØUse a two-layer scheduling framework
ØEnsure request affinity
ØSupport practical scheduling policies

31



Thanks!

32

E-mail address: hzhu@jhu.edu

https://github.com/netx-repo/RackSched


