RackSched: A Microsecond-Scale Scheduler for
Rack-Scale Computers

Hang Zhu

Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis, lon Stoica, Xin Jin

% Stanford Berkeley WILLIAM

JOHNS HOPKINS University UNIVERSITY OF CALIFORNIA &9 MARY

UNIVERSITY . CHART ERED 1693

Online services require low tail latency

v

VOLTDB

Low tail latency: 10s~100s of microseconds

How to serve microsecond-scale workloads?

Scale up
[Shinjuku, NSDI’19]
Request []

l

LI Queue » Centralized scheduling policies
Dispatcher core »CcFCFS (centralized first-come-first-serve)
% L »PS (processor sharing)

Worker cores

A multi-core server

How to serve microsecond-scale workloads?

Scale up Larger demands Scale out
[Shinjuku, NSDI'19] N
Request I%I Request[_]
Worker threads Worker threads Worker threads Worker threads

A rack-scale computer

Can we do centralized scheduling?

. _ N
» Centralized scheduling equest []
cannot scale 1
=
] Queue
Centralized
scheduler

l

Worker threads Worker threads Worker threads

A rack-scale computer

Our proposal: hierarchical scheduling

» Centralized scheduling Request []
cannot scale U
»Hierarchical scheduling Inter-server scheduler

»Load imbalance %\
Queue 1]
|~ B =

Intra-server Intra-server Intra-server
scheduler scheduler scheduler

Our proposal: hierarchical scheduling

»Centralized scheduling Request [_]
cannot scale U
»Hierarchical scheduling INEFEOEr seneelir
»Load imbalance %\
»Head-of-line blocking Q
u ueue HOL blocking \QI
Intra-server Intra-server Intra-server
scheduler scheduler scheduler

Inter-server scheduler

»Scaling the inter-server
scheduler
»Programmable switches

»Join-the-shortest-queue
(JSQ) is bufferless

»Approximating JSQ

» Power-of-k-choices

Request [_]
/]

Inter-server scheduler

A distributed, client-based inter-server scheduler?

» Client complexity

»QOverhead for
reconfiguration l

»Worse scheduling quality
‘ \ Queue ‘ \
500 []

Intra-server Intra-server Intra-server
scheduler scheduler scheduler

Client 1 Client 2 Client n

How to realize the two-layer scheduling framework?

»What is the system architecture?
»How to process/schedule requests based on the server loads?
»How to ensure request affinity?

»How to handle practical scheduling requirements?

How to realize the two-layer scheduling framework?

»What is the system architecture?
»How to process/schedule requests based on the server loads?
»How to ensure request affinity?

»How to handle practical scheduling requirements?

11

»Inter-server scheduling

» Handle temporal load
Imbalance

»Intra-server scheduling

» Handle head-of-line
blocking

RackSched architecture

Client

L2/L.3
Routing

ToR Switch

Intra-Server
Scheduler

Worker Threads

Client

Rack-Scale Computer

Client

| | | || | | | | | | | | | e |

Request Request

Scheduling

Inter-Server Scheduler

Intra-Server
Scheduler

Affinity

Server
Tracking

Intra-Server
Scheduler

T B | B

Worker Threads

Worker Threads

How to realize the two-layer scheduling framework?

»What is the system architecture?
»How to process/schedule requests based on the server loads?
»How to ensure request affinity?

»How to handle practical scheduling requirements?

13

Packet format

Existing Protocols RackSched Header
A A

P TCP/UDP TYPE REQ_ID LOAD Payload

|]
Y
) reserved
L2/L3 Routing ‘ oort # \

REQF, REQR,
REP, etc.

» The 1st packet of a request

» The following packets of

the request

» The reply packets

Reqguest processing

Insert Read
ReqTable LoadTable
ToR Switch

Read
ReqTable LoadTable
ToR Switch

Remove Update
ReqTable LoadTable

ToR Switch

Intra-Server
Scheduler

BT

Server

Intra-Server
Scheduler

BT

Server

Intra-Server
Scheduler

DT

Server

15

Request scheduling

pkt.dstip == 10.0.0.1

meta.load i =
array[rand_i].load

meta.ip_i =
array[rand_i].ip

‘ zoom-out

I I L X X] I ——- —

power of k choices to
sample k servers

Register Array

tree-based parallel
computation of min()

16

How to realize the two-layer scheduling framework?

»What is the system architecture?
»How to process/schedule requests based on the server loads?
»How to ensure request affinity?

»How to handle practical scheduling requirements?

17

Request affinity

Stage 1

B

3 |[1.0.0.2

h,(pkt.req_id)

Stage 2

hy(pkt.req_id)

Stage 3

4 (1.0.04

/7 11.0.0.3
6 |1.0.0.2

hs(pkt.req_id)

>

» Insert: iterate over stages to find an empty slot
» Read: find a matched slot to read the server IP
» Remove: remove a completed request

18

How to realize the two-layer scheduling framework?

»What is the system architecture?
»How to process/schedule requests based on the server loads?
»How to ensure request affinity?

»How to handle practical scheduling requirements?

19

Handling scheduling requirements

» Multi-queue support
»Separate queue for each request type on each server

»Locality and placement constraints
»Data locality
»Request dependency

»Resource allocation policies
» Strict priority
»Weighted fair sharing

Check our paper for more details

I m p | e m e ntat i O n ARTIFACT ARTIFACT

EVALUATED EVALUATED

AVAILABLE REPRODUCED

»Switch
»6.5Tbps Barefoot Tofino switch
»Written in P4

»Server
»8-core CPU and 40G NIC
» Shinjuku

> Client
> Intel DPDK 16.11.1

https://github.com/netx-repo/RackSched

21

Evaluation

»Does RackSched improve the performance?
»Does RackSched scale?

»Does RackSched benefit applications?
»What is the impact of the design decisions?

»Does RackSched ensure request affinity?

22

Evaluation

»Does RackSched improve the performance?
»Does RackSched scale?

»Does RackSched benefit applications?
»What is the impact of the design decisions?

»Does RackSched ensure request affinity?

23

Does F

99% Latency (us)

1000
800

0

=@ RackSched
== Shinjuku
600 |

400
200 r

0

200 400 600 800 1000
Load (KRPS)

(a) Exp(50).

1500

-t
=]
o
o

500 ¢

99% Latency (us)

=@ RackSched
=== Shinjuku

0
0

250 500
Load (KRPS)

750

(b) Bimodal(90%-50, 10%-500).

3000

N
o
(=]
o

1000 r

99% Latency (us)

=@ RackSched
== Shinjuku

0
0

50

100
Load (KRPS)

150

200

(c) Bimodal(50%-50, 50%-500).

20000

15000

99% Latency (us)

0

10000 r

5000

\ackSched improve the performance?

=@ RackSched

=== Shinjuku

0 30 60
Load (KRPS)

90

(d) Trimodal(33.3%-50, 33.3%-500,

33.3%-5000).

RackSched supports larger throughput with lower tail latency

24

Does RackSched improve the performance?

=@= RackSched
800 g Shinjuku

99% Latency (us)

Load (KRPS)

(a) Exp(50).

0 250 500 750

1000

1500 3000 t
o =@= RackSched P =@= RackSched
3 = Shinjuku Ll feelll= Shinjuku
= 1000 | > 2000 |
2 2
[} 3]
5 L
2 500 2 1000
3 3

0 1 1 0 1 1 1
0 200 400 600 0 50 100 150
Load (KRPS)

Load (KRPS)

200

(b) Bimodal(90%-50, 10%-500). (c) Bimodal(50%-50, 50%-500).

20000
=@= RackSched

15000 |=lll= Shinjuku

10000

99% Latency (us)

5000 r

0 1 1

0 25 50 75
Load (KRPS)

(d) Trimodal(33.3%-50, 33.3%-500,

33.3%-5000).

RackSched improves the throughput further by up to 1.44X

25

Does RackSched scale?

=@= RackSched(1) =@= RackSched(2) =@= RackSched(4) =@= RackSched(8)
== Shinjuku(1) === Shinjuku(2) === Shinjuku(4) === Shinjuku(8)

1500 1

—_
o
o
o

500 ¢

99% Latency (us)

0 100 200 300 400 500 600 700
Load (KRPS)

» RackSched scales out the throughput near linearly
» The throughput is increased without increasing the tail latency

26

Does RackSched benefit applications?

2000 5000 800 5000
. =@== RackSched & =@= RackSched - =@ RackSched _ =@= RackSched
3 1500 | == Shinjuku 3 4000 e Shinjuku 8 600 | == Shinjuku 9 4000 | _g Shinjuku
) g’ 3000 g &' 3000
& 1000 g o 400 S
9 < 2000 s § 2000 +
R X R 2
g 500 2 1000 g 200 § 1000 r
0 . . 0 : : 0 . . 0 I 1
0 200 400 600 0 50 100 150 0 50 100 150 0 50 100 150
Load (KRPS) Load (KRPS) Load (KRPS) Load (KRPS)
(a) 90%-GET, 10%-SCAN. (b) 50%-GET, 50%-SCAN. (c¢) GET in 50%-GET, 50%-SCAN. (d) SCAN in 50%-GET, 50%-SCAN.

RackSched does not sacrifice any individual request type

27

Design decisions: switch scheduling policies

Q== RR == Sampling-2 === RR =—py= Sampling-2
—@— Shortest =¥ Sampling-4 —@— Shortest =¥ Sampling-4
__1500 __3000
) 0
2 2
3 1000 & 2000
C c
o {_.
3 500} 31000
X X
3 i . . 3 " . . .
0 250 500 750 0 50 100 150 200

Load (KRPS) Load (KRPS)

(a) Bimodal(90%-50,10%-500). (b) Bimodal(50%-50,50%-500).

> RR: without considering the variability of service times
» Shortest: the herding behavior

28

Design decisions: load tracking mechanisms

w—@== [NT1 =t |INT3 @ [NT1 ==t INT3

el |[NT2 =% Proactive wefll== |[NT2 =%== Proactive
__ 1500 3000
0 0
2 3 .
§ 1000 3 §2000
L 9 v
3 500} 3 1000 o
3 3 g%
(e))] 0 | | (o)) 0 | | |

0 250 500 750 0 50 100 150 200
Load (KRPS) Load (KRPS)

(a) Bimodal(90%-50,10%-500). (b) Bimodal(50%-50,50%-500).

> INT2: only track the minimal number of outstanding requests

» INT3: track the total service time of outstanding requests
» Proactive: increment and decrement the counters by the switch

Design decisions. comparing with
other solutions

=@== RackSched ==t Client(100) =@== RackSched ==#== Client(100)

=== Shinjuku =%== R2P2 == Shinjuku =¥ R2P2
__1500 3000 R
& 1000 & 2000
2 g
2 e
S 500} 5 1000
X X
o) o))
» 0 . . » 0 . . .
0 250 500 750 0 50 100 150 200
Load (KRPS) Load (KRPS)

(a) Bimodal(90%-50,10%-500). (b) Bimodal(50%-50,50%-500).

» Client(100) has nearly the same performance as Shinjuku
» R2P2 has head-of-line blocking

30

Conclusion

»Emerging workloads require microsecond-scale tail latency

»RackSched is a rack-level microsecond-scale scheduler that
achieves scalability and low tail latency
»Use a two-layer scheduling framework
»Ensure request affinity
»Support practical scheduling policies

31

Thanks!

E-mail address: hzhu@jhu.edu

https://github.com/netx-repo/RackSched

