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Online services require low tail latency
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VOLTDB

Low tail latency: 10s~100s of microseconds



How to serve microsecond-scale workloads?

Scale up
[Shinjuku, NSDI’19]
Request [ ]
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LI Queue » Centralized scheduling policies
Dispatcher core »CcFCFS (centralized first-come-first-serve)
% L »PS (processor sharing)

Worker cores

A multi-core server



How to serve microsecond-scale workloads?

Scale up Larger demands Scale out
[Shinjuku, NSDI'19] N
Request I%I Request[_]
Worker threads Worker threads Worker threads Worker threads

A rack-scale computer



Can we do centralized scheduling?
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Our proposal: hierarchical scheduling

» Centralized scheduling Request []
cannot scale U
»Hierarchical scheduling Inter-server scheduler

»Load imbalance %\
Queue 1]
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Intra-server Intra-server Intra-server
scheduler scheduler scheduler



Our proposal: hierarchical scheduling

»Centralized scheduling Request [_]
cannot scale U
»Hierarchical scheduling INEFEOEr seneelir
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Inter-server scheduler

»Scaling the inter-server
scheduler
»Programmable switches

»Join-the-shortest-queue
(JSQ) is bufferless

»Approximating JSQ

» Power-of-k-choices

Request [_]
/]

Inter-server scheduler



A distributed, client-based inter-server scheduler?

» Client complexity

»QOverhead for
reconfiguration l

»Worse scheduling quality
‘ \ Queue ‘ \
500 [ ]

Intra-server Intra-server Intra-server
scheduler scheduler scheduler

Client 1 Client 2 Client n



How to realize the two-layer scheduling framework?

»What is the system architecture?
»How to process/schedule requests based on the server loads?
»How to ensure request affinity?

»How to handle practical scheduling requirements?
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»Inter-server scheduling

» Handle temporal load
Imbalance

»Intra-server scheduling

» Handle head-of-line
blocking

RackSched architecture
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How to realize the two-layer scheduling framework?
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Packet format

Existing Protocols RackSched Header
A A

P TCP/UDP TYPE REQ_ID LOAD Payload

| ]
Y
) reserved
L2/L3 Routing ‘ oort # \

REQF, REQR,
REP, etc.




» The 1st packet of a request

» The following packets of

the request

» The reply packets

Reqguest processing

Insert Read
ReqTable LoadTable
ToR Switch

Read
ReqTable LoadTable
ToR Switch

Remove Update
ReqTable LoadTable

ToR Switch
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Server
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Request scheduling

pkt.dstip == 10.0.0.1

meta.load i =
array[rand_i].load

meta.ip_i =
array[rand_i].ip

‘ zoom-out

I I L X X ] I ——- —

power of k choices to
sample k servers

Register Array

tree-based parallel
computation of min()
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How to realize the two-layer scheduling framework?

»What is the system architecture?
»How to process/schedule requests based on the server loads?
»How to ensure request affinity?

»How to handle practical scheduling requirements?
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Request affinity

Stage 1

B

3 |[1.0.0.2

h,(pkt.req_id)

Stage 2

hy(pkt.req_id)

Stage 3

4 (1.0.04

/7 11.0.0.3
6 |1.0.0.2

hs(pkt.req_id)

>

» Insert: iterate over stages to find an empty slot
» Read: find a matched slot to read the server IP
» Remove: remove a completed request
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How to realize the two-layer scheduling framework?
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Handling scheduling requirements

» Multi-queue support
»Separate queue for each request type on each server

»Locality and placement constraints
»Data locality
»Request dependency

»Resource allocation policies
» Strict priority
»Weighted fair sharing

Check our paper for more details



I m p | e m e ntat i O n ARTIFACT ARTIFACT

EVALUATED EVALUATED

AVAILABLE REPRODUCED

»Switch
»6.5Tbps Barefoot Tofino switch
»Written in P4

»Server
»8-core CPU and 40G NIC
» Shinjuku

> Client
> Intel DPDK 16.11.1

https://github.com/netx-repo/RackSched
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Evaluation

»Does RackSched improve the performance?
»Does RackSched scale?

»Does RackSched benefit applications?
»What is the impact of the design decisions?

»Does RackSched ensure request affinity?
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RackSched supports larger throughput with lower tail latency
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Does RackSched improve the performance?
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RackSched improves the throughput further by up to 1.44X
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Does RackSched scale?

=@= RackSched(1) =@= RackSched(2) =@= RackSched(4) =@= RackSched(8)
== Shinjuku(1) === Shinjuku(2) === Shinjuku(4) === Shinjuku(8)

1500 1

—_
o
o
o

500 ¢

99% Latency (us)

0 100 200 300 400 500 600 700
Load (KRPS)

» RackSched scales out the throughput near linearly
» The throughput is increased without increasing the tail latency
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Does RackSched benefit applications?
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RackSched does not sacrifice any individual request type
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Design decisions: switch scheduling policies
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(a) Bimodal(90%-50,10%-500). (b) Bimodal(50%-50,50%-500).

> RR: without considering the variability of service times
» Shortest: the herding behavior
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Design decisions: load tracking mechanisms
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> INT2: only track the minimal number of outstanding requests

» INT3: track the total service time of outstanding requests
» Proactive: increment and decrement the counters by the switch



Design decisions. comparing with
other solutions
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» Client(100) has nearly the same performance as Shinjuku
» R2P2 has head-of-line blocking
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Conclusion

»Emerging workloads require microsecond-scale tail latency

»RackSched is a rack-level microsecond-scale scheduler that
achieves scalability and low tail latency
»Use a two-layer scheduling framework
»Ensure request affinity
»Support practical scheduling policies
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Thanks!

E-mail address: hzhu@jhu.edu

https://github.com/netx-repo/RackSched



