Ansor : Generating High-Performance Tensor Programs for Deep Learning

Lianmin Zheng, Chenfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph Gonzalez, Ion Stoica

Deep Learning System Stack

Introducing Compiler

compiler

A dense layer with ReLU activation

• Math expression:

$$dense_{b,o} = \sum_{i} data_{b,i} \times weight_{o,i}$$
$$relu(b,o) = \max(dense_{b,o}, 0)$$

• Declaration:

Halide

```
dense(o, b) += data(i, b) * weight(i, o);
relu(o, b) = max(dense(o, b), 0.0)
```

TVM

```
dense = compute(shape, lambda b, o: sum(data[b,i] * weight[o,i], i))
relu = compute(shape, lambda b, o: max(dense[b,o], 0.0))
```

Billions of possible implementations for it!

Related Work on Generating High-Performance Tensor Programs

TVM's Approach

AutoTVM: Template-guided search

Use **templates** to define the search space for every operator

Drawbacks

- Not fully-automated -> Requires huge manual effort
- Limited search space -> Does not achieve optimal performance

Halide's Auto-scheduler

Sequential Construction Based Search

Use beam search to generate the programs sequentially

Drawbacks

- Intermediate candidates are incomplete programs
 - -> The cost model cannot do accurate prediction
- Sequential order
 - -> The error accumulates
 - -> Limits the design of the search space

Incomplete Program				
<pre>for i.0 in range(512): for j.0 in range(512): D[] = max(C[], 0.0)</pre>				
How to build the next statement ?				
	Candidate 1 🔶 🗱 Pruned			
	Candidate 2 Kept			
	Candidate 3 Kept			
	Candidate 4 🔶 🗱 Pruned			

Learning to Optimize Halide with Tree Search and Random Programs, SIGGRAPH 19

Challenges and our approach

C1: How to build a large search space automatically?

• Use a hierarchical search space

C2: How to search efficiently?

• Sample complete programs and fine-tune them

Challenges and our approach

Need to generate programs for all layers -> A lot of search tasks

- C3: How to allocate resource for many search tasks?
 - Utilize a task scheduler to prioritize important tasks

System Overview

Program Sampling

Program Sampling

• **Goal**: automatically construct a large search space and uniformly sample from the space

• Approach

- Two-level hierarchical search space: Sketch + Annotation
 - **Sketch:** a few good high-level structures
 - Annotation: billions of low-level details
- Sampling process:

Sketch Generation Examples 1/2

Example Input 1:

* The mathmetical expression: $C[i,j] = \sum_{k} A[i,k] \times B[k,j]$ $D[i,j] = \max(C[i,j], 0.0)$ where $0 \le i, j, k < 512$ * The corresponding naïve program: for i in range(512): for j in range(512): for k in range(512): C[i, j] += A[i, k] * B[k, j] for i in range(512): for j in range(512): D[i, j] = max(C[i, j], 0.0)

* The corresponding DAG:

Input $1 \to \sigma(S_0, i = 4) \xrightarrow{\text{Rule 1}} \sigma(S_1, i = 3) \xrightarrow{\text{Rule 4}} \sigma(S_2, i = 2) \xrightarrow{\text{Rule 1}} \sigma(S_3, i = 1) \xrightarrow{\text{Rule 1}} Sketch 1$

Generated sketch 1

Derivation:

"SSRSRSS" multi-level tiling + fusion

Sketch Generation Examples 2/2

Example Input 2:

* The mathmetical expression: $B[i, l] = \max(A[i, l], 0.0)$ $C[i, k] = \begin{cases} B[i, k], & k < 400 \\ 0, & k \ge 400 \end{cases}$ $E[i, j] = \sum_{k} C[i, k] \times D[k, j]$ where $0 \le i < 8, 0 \le j < 4,$ $0 \le k < 512, 0 \le l < 400$ * The corresponding naïve program: for i in range(8): for l in range(400):

B[i, 1] = max(A[i, 1], 0.0)
for i in range(8):
 for k in range(512):
 C[i, k] = B[i, k] if k < 400 else 0
for i in range(8):
 for j in range(4):
 for k in range(512):
 E[i, j] += C[i, k] * D[k, j]</pre>

* The corresponding DAG:

Generated sketch 2

```
for i in range(8):
 for k in range(512):
   C[i, j] = max(A[i,k], 0.0) if k<400 else 0
for i.0 in range(TILE I0):
 for j.0 in range(TILE J0):
   for i.1 in range(TILE I1):
      for j.1 in range(TILE J1):
        for k.0 in range(TILE K0):
          for i.2 in range(TILE I2):
            for j.2 in range(TILE J2):
              for k.1 in range(TILE I1):
                for i.3 in range(TILE_I3):
                  for j.3 in range(TILE J3):
                    E.cache[...] += C[...] * D[...]
        for i.4 in range(TILE I2 * TILE I3):
          for j.4 in range(TILE J2 * TILE J3):
            E[\ldots] = E.cache[\ldots]
```

Generated sketch 3

for i in range(8):
 for k in range(512):
 C[i, k] = max(A[i, k], 0.0) if k < 400 else 0
for i in range(8):
 for j in range(4):
 for k_o in range(TILE_K0):
 for k_i in range(TILE_KI):
 E.rf[...] += C[...] * D[...]
for i in range(8):
 for j in range(4):
 for k_i in range(TILE_KI):
 E[...] += E.rf[...]</pre>

Input 2 $\rightarrow \sigma(S_0, i = 5) \xrightarrow{\text{Rule 5}} \sigma(S_1, i = 5) \xrightarrow{\text{Rule 4}} \sigma(S_2, i = 4) \xrightarrow{\text{Rule 1}} \sigma(S_3, i = 3) \xrightarrow{\text{Rule 1}} \sigma(S_4, i = 2) \xrightarrow{\text{Rule 2}} \sigma(S_5, i = 1) \xrightarrow{\text{Rule 1}} Sketch 2$

Input 2
$$\rightarrow \sigma(S_0, i = 5) \xrightarrow{\text{Rule } 6} \sigma(S_1, i = 4) \xrightarrow{\text{Rule } 1} \sigma(S_2, i = 3) \xrightarrow{\text{Rule } 1} \sigma(S_3, i = 2) \xrightarrow{\text{Rule } 2} \sigma(S_4, i = 1) \xrightarrow{\text{Rule } 1} Sketch 3$$

Random Annotation Examples

Generated sketch 1

Sampled program 1

```
parallel i.0@j.0@i.1@j.1 in range(256):
    for k.0 in range(32):
        for i.2 in range(16):
            unroll k.1 in range(16):
            unroll i.3 in range(4):
            vectorize j.3 in range(16):
                C[...] += A[...] * B[...]
    for i.4 in range(64):
        vectorize j.4 in range(16):
            D[...] = max(C[...], 0.0)
```

Sampled program 2

```
parallel i.2 in range(16):
    for j.2 in range(128):
        for k.1 in range(512):
            for i.3 in range(32):
                vectorize j.3 in range(4):
                      C[...] += A[...] * B[...]
parallel i.4 in range(512):
        for j.4 in range(512):
        D[...] = max(C[...], 0.0)
```

Performance Fine-tuning

Evolutionary Search

- Random sampling does not guarantee the performance
- Perform evolutionary search with learned cost model on sampled programs

mutation

- Randomly mutate tile size
- Randomly mutate parallel/unroll/vectorize factor and granularity
- Randomly mutate computation location
- crossover

Learned Cost Model

• Predict the score of each non-loop innermost statement

Example:

	for i in range(10):	
	for j in range(10):	
Statement B:	B[i][j] = A[i] * 2	
	for i in range(10):	
Statement C:	C[i] = B[i][i] - 3	

Cost = Cost of Statement B + Cost of Statement C

- Extract features for every non-loop innermost statement:
 - used cache lines, used memory, reuse distance, arithmetic intensity, ...
- Train on-the-fly with measured programs (typically less than 30,000)

Task Scheduler

Task Scheduler

- There are many **subgraphs** (search tasks) in a network
 - Example: ResNet-50 has 29 unique subgraphs after partition
- **Existing systems**: sequential optimization with a fixed allocation

Task 1		
	Task 2	
	Task 3	

• **Our task scheduler**: slice the time and prioritize important subgraphs

- Predict each task's impact on the end-to-end objective function
 - Using optimistic guess and similarity between tasks

Evaluation Results

Three levels : single operator, subgraph and network

Single Operator

Platform:

Intel-Platinum 8124M (18 cores)

Operators:

conv1d (C1D), conv2d (C2D), conv3d (C3D), matmul (GMM) group conv2d (GRP), dilated conv2d (DIL) depthwise conv2d (DEP), conv2d transpose (T2D), capsule conv2d (CAP), matrix 2-norm (NRM)

Analysis:

Unroll to simplify the multiplication of zeros in the strided case

For most test cases, the best programs found by Ansor are outside the search space of existing search-based frameworks.

Subgraph

Platforms:

"@C" for Intel CPU (8124M) "@G" for NVIDIA (V100)

Subgraphs: ConvLayer = conv2d + bn + relu TBS = transpose + batch_matmul + softmax

Analysis:

Comprehensive coverage of the search space gives $1.1 - 14.2 \times$ speedup against the best alternative.

Network

Platforms: Intel CPU (8124M) NVIDIA GPU (V100) ARM CPU (A53)

Networks: ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Analysis

• Ansor performs best or equally the best in all test cases with up to 3.8x speedup

Network

Platforms: Intel CPU (8124M) NVIDIA GPU (V100) ARM CPU (A53)

Networks: ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Analysis

• Ansor performs best or equally the best in all test cases with up to 3.8x speedup

Network

Platforms: Intel CPU (8124M) NVIDIA GPU (V100) ARM CPU (A53)

Networks: ResNet-50, Mobilenet V2, 3D-ResNet, DCGAN, BERT

Analysis

- Ansor performs best or equally the best in all test cases with up to 3.8x speedup
- Ansor delivers portable performance

Ablation Study

Analysis

- The most important factor is the search space
- Fine-tuning improves the search results significantly
- Task scheduler accelerates the search
- Match the performance of AutoTVM with 10x less search time

Summary

- Search-based compilation enables to generate high-performance tensor programs for deep learning
- Ansor introduces techniques to improve the search in three aspects:
 - Large search space
 - Efficient search algorithm
 - Smart search scheduling

- Thank you for listening
- Email me to ask follow-up questions: lianminzheng@gmail.com