
Ansor : Generating High-Performance
Tensor Programs for Deep Learning

Lianmin Zheng, Chenfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,
Ameer Haj Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,
Joseph Gonzalez, Ion Stoica

Deep Learning System Stack

Introducing Compiler

𝑑𝑒𝑛𝑠𝑒!,# =&
$

𝑑𝑎𝑡𝑎!,$×𝑤𝑒𝑖𝑔ℎ𝑡#,$

𝑟𝑒𝑙𝑢 𝑏, 𝑜 = max(𝑑𝑒𝑛𝑠𝑒!,# , 0)

A dense layer with ReLU activation

• Math expression:

• Declaration:

dense(o, b) += data(i, b) * weight(i, o);
relu(o, b) = max(dense(o, b), 0.0)

Halide

dense = compute(shape, lambda b, o: sum(data[b,i] * weight[o,i], i))
relu = compute(shape, lambda b, o: max(dense[b,o], 0.0))

TVM

Billions of possible implementations for it!

Related Work on Generating
High-Performance Tensor Programs

TVM's Approach

...

Manual Template

for i.0 in range():
for j.0 in range():

for k.0 in range():
for i.1 in range():

for j.1 in range():
C[...] += A[...] * B[...]

for i.2 in range():
for j.2 in range():

D[...] = max(C[...], 0.0)

?
?

?
?

?

?
?

Parameter Search

AutoTVM: Template-guided search
Use templates to define the search space for every operator

Drawbacks
• Not fully-automated -> Requires huge manual effort

• Limited search space -> Does not achieve optimal performance

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning, OSDI 18

...

Incomplete Program

for i.0 in range(512):
for j.0 in range(512):

D[...] = max(C[...], 0.0)

How to build the next statement ?

Candidate 1

Candidate 2

Candidate 3

Candidate 4

Pruned

Pruned

Kept

Kept

Beam Search with Early Pruning

Learning to Optimize Halide with Tree Search and Random Programs, SIGGRAPH 19

Halide’s Auto-scheduler

Sequential Construction Based Search
Use beam search to generate the programs sequentially

Drawbacks
• Intermediate candidates are incomplete programs

-> The cost model cannot do accurate prediction

• Sequential order

-> The error accumulates

-> Limits the design of the search space

Challenges and our approach

C1: How to build a large search space automatically?
• Use a hierarchical search space

• Sample complete programs and fine-tune them

C2: How to search efficiently?

Fine-tuning

Better Programs

Low-level detail sampling

......
for i.0 in range(64):

for j.0 in range(64):
for k.0 in range(512):

for i.1 in range(8):
for j.1 in range(8):

D[...] = ...

Complete Programs

...
for ...

for ...
for ...

for ...

...
for ...

for ...
for ...

for ...

...
for ...

for ...
for ...

for ...

High-level structure generation

?
?

?

?

?

Challenges and our approach

• C3: How to allocate resource for many search tasks?

• Utilize a task scheduler to prioritize important tasks

Layer 1

Layer 2

Layer 49

Layer 50

Layer 3

...

Need to generate programs for all layers -> A lot of search tasks

System Overview

Deep Learning Models

Subgraph 1

Task Scheduler

Subgraph 2 Subgraph 3 · · ·

Program Sampler

Sketch Generation Random Annotation

Performance Tuner

Evolutionary Search Learned Cost Model

Intel CPU

Measurer

ARM CPU NVIDIA GPU · · ·

Partitioned subgraphs

One subgraph

A batch of initial programs

A batch of optimized programs

Execution time of programs

Program
Sampling

Deep Learning Models

Subgraph 1

Task Scheduler

Subgraph 2 Subgraph 3 · · ·

Program Sampler

Sketch Generation Random Annotation

Performance Tuner

Evolutionary Search Learned Cost Model

Intel CPU

Measurer

ARM CPU NVIDIA GPU · · ·

Partitioned subgraphs

One subgraph

A batch of initial programs

A batch of optimized programs

Execution time of programs

• Goal: automatically construct a large search space and uniformly
sample from the space

• Approach
• Two-level hierarchical search space: Sketch + Annotation
• Sketch: a few good high-level structures
• Annotation: billions of low-level details

Program Sampling

Compute
Declaration

Rule-based
Sketch Generation

Sketch 1

Sketch 2

...

Random Annotation Complete
Programs

• Sampling process:

Sketch Generation Examples 1/2

for i.0 in range(TILE_I0):
for j.0 in range(TILE_J0):
for i.1 in range(TILE_I1):

for j.1 in range(TILE_J1):
for k.0 in range(TILE_K0):

for i.2 in range(TILE_I2):
for j.2 in range(TILE_J2):

for k.1 in range(TILE_I1):
for i.3 in range(TILE_I3):

for j.3 in range(TILE_J3):
C[...] += A[...] * B[...]

for i.4 in range(TILE_I2 * TILE_I3):
for j.4 in range(TILE_J2 * TILE_J3):
D[...] = max(C[...], 0.0)

Generated	sketch	1
* The mathmetical expression:
! ", $ = &'[",)]

�

,
	×	/[), $]

0 ", $ = max	(! ", $, 0.0)
where 0 ≤ ", $,) < 512
* The corresponding naïve program:
for i in range(512):

for j in range(512):
for k in range(512):

C[i, j] += A[i, k] * B[k, j]
for i in range(512):

for j in range(512):
D[i, j] = max(C[i, j], 0.0)

* The corresponding DAG:

Example	Input	1:

A

B
C D

Derivation:

“SSRSRSS” multi-level tiling + fusion

Sketch Generation Examples 2/2

Random Annotation Examples

parallel i.0@j.0@i.1@j.1 in range(256):
for k.0 in range(32):
for i.2 in range(16):

unroll k.1 in range(16):
unroll i.3 in range(4):

vectorize j.3 in range(16):
C[...] += A[...] * B[...]

for i.4 in range(64):
vectorize j.4 in range(16):

D[...] = max(C[...], 0.0)

Sampled	program	1		

parallel i.2 in range(16):
for j.2 in range(128):
for k.1 in range(512):

for i.3 in range(32):
vectorize j.3 in range(4):

C[...] += A[...] * B[...]
parallel i.4 in range(512):

for j.4 in range(512):
D[...] = max(C[...], 0.0)

Sampled	program	2

for i.0 in range(TILE_I0):
for j.0 in range(TILE_J0):
for i.1 in range(TILE_I1):

for j.1 in range(TILE_J1):
for k.0 in range(TILE_K0):

for i.2 in range(TILE_I2):
for j.2 in range(TILE_J2):

for k.1 in range(TILE_I1):
for i.3 in range(TILE_I3):

for j.3 in range(TILE_J3):
C[...] += A[...] * B[...]

for i.4 in range(TILE_I2 * TILE_I3):
for j.4 in range(TILE_J2 * TILE_J3):
D[...] = max(C[...], 0.0)

Generated	sketch	1
parallel i.0@j.0@i.1@j.1 in range(256):

for k.0 in range(32):
for i.2 in range(16):

unroll k.1 in range(16):
unroll i.3 in range(4):

vectorize j.3 in range(16):
C[...] += A[...] * B[...]

for i.4 in range(64):
vectorize j.4 in range(16):

D[...] = max(C[...], 0.0)

Sampled	program	1		

parallel i.2 in range(16):
for j.2 in range(128):
for k.1 in range(512):

for i.3 in range(32):
vectorize j.3 in range(4):

C[...] += A[...] * B[...]
parallel i.4 in range(512):

for j.4 in range(512):
D[...] = max(C[...], 0.0)

Sampled	program	2

for i.0 in range(TILE_I0):
for j.0 in range(TILE_J0):
for i.1 in range(TILE_I1):

for j.1 in range(TILE_J1):
for k.0 in range(TILE_K0):

for i.2 in range(TILE_I2):
for j.2 in range(TILE_J2):

for k.1 in range(TILE_I1):
for i.3 in range(TILE_I3):

for j.3 in range(TILE_J3):
C[...] += A[...] * B[...]

for i.4 in range(TILE_I2 * TILE_I3):
for j.4 in range(TILE_J2 * TILE_J3):
D[...] = max(C[...], 0.0)

Generated	sketch	1

Performance
Fine-tuning

Deep Learning Models

Subgraph 1

Task Scheduler

Subgraph 2 Subgraph 3 · · ·

Program Sampler

Sketch Generation Random Annotation

Performance Tuner

Evolutionary Search Learned Cost Model

Intel CPU

Measurer

ARM CPU NVIDIA GPU · · ·

Partitioned subgraphs

One subgraph

A batch of initial programs

A batch of optimized programs

Execution time of programs

Evolutionary Search

• Random sampling does not guarantee the performance
• Perform evolutionary search with learned cost model on sampled programs

• mutation

• crossover

+ =

• Randomly mutate tile size
• Randomly mutate parallel/unroll/vectorize factor and granularity
• Randomly mutate computation location

• Predict the score of each non-loop innermost statement

for i in range(10):
for j in range(10):

B[i][j] = A[i] * 2
for i in range(10):
C[i] = B[i][i] - 3

Statement B:

Statement C:

Example:

Cost = Cost of Statement B + Cost of Statement C

• Extract features for every non-loop innermost statement:
• used cache lines, used memory, reuse distance, arithmetic intensity, ...

• Train on-the-fly with measured programs (typically less than 30,000)

Learned Cost Model

Task
Scheduler

Deep Learning Models

Subgraph 1

Task Scheduler

Subgraph 2 Subgraph 3 · · ·

Program Sampler

Sketch Generation Random Annotation

Performance Tuner

Evolutionary Search Learned Cost Model

Intel CPU

Measurer

ARM CPU NVIDIA GPU · · ·

Partitioned subgraphs

One subgraph

A batch of initial programs

A batch of optimized programs

Execution time of programs

Task Scheduler
• There are many subgraphs (search tasks) in a network

• Example: ResNet-50 has 29 unique subgraphs after partition

• Predict each task’s impact on the end-to-end objective function
• Using optimistic guess and similarity between tasks

Task 1
Task 2

Task 3

• Existing systems: sequential optimization with a fixed allocation

• Our task scheduler: slice the time and prioritize important subgraphs
Task 1

Task 2
Task 3

Task 1
Task 2

Task 1

Task 3

Task 1

Evaluation
Results

Three levels : single operator, subgraph and network

Single Operator
Platform:
Intel-Platinum 8124M (18 cores)

Operators:
conv1d (C1D), conv2d (C2D),
conv3d (C3D), matmul (GMM)
group conv2d (GRP),
dilated conv2d (DIL)
depthwise conv2d (DEP),
conv2d transpose (T2D),
capsule conv2d (CAP),
matrix 2-norm (NRM)

Analysis:
For most test cases, the best programs found by Ansor are
outside the search space of existing search-based frameworks.

Parallelize reduction loops

Unroll to simplify the multiplication of zeros in the strided case

Explore more tiling levels and computation locations

Subgraph

Platforms:
"@C" for Intel CPU (8124M)
"@G" for NVIDIA (V100)

Subgraphs:
ConvLayer = conv2d + bn + relu
TBS = transpose + batch_matmul

+ softmax

Analysis:
Comprehensive coverage of the search space gives 1.1 – 14.2× speedup against the best alternative.

Network

Analysis
• Ansor performs best or equally the best in all test cases with up to 3.8x speedup

Platforms:
Intel CPU (8124M)
NVIDIA GPU (V100)
ARM CPU (A53)

Networks:
ResNet-50, Mobilenet V2,
3D-ResNet, DCGAN, BERT

Intel CPU

Network

Platforms:
Intel CPU (8124M)
NVIDIA GPU (V100)
ARM CPU (A53)

Networks:
ResNet-50, Mobilenet V2,
3D-ResNet, DCGAN, BERT

Analysis
• Ansor performs best or equally the best in all test cases with up to 3.8x speedup

NVIDIA GPU

Network

Platforms:
Intel CPU (8124M)
NVIDIA GPU (V100)
ARM CPU (A53)

Networks:
ResNet-50, Mobilenet V2,
3D-ResNet, DCGAN, BERT

ARM CPU

Analysis
• Ansor performs best or equally the best in all test cases with up to 3.8x speedup
• Ansor delivers portable performance

Ablation Study

Analysis
• The most important factor is the search space
• Fine-tuning improves the search results significantly
• Task scheduler accelerates the search
• Match the performance of AutoTVM with 10x less search time

Ansor

Ansor w/o task scheduler

Ansor w/o fine-tuning

Ansor w/o large search space

Baseline (AutoTVM)

Summary

• Search-based compilation enables to generate high-performance
tensor programs for deep learning

• Ansor introduces techniques to improve the search in three aspects:
• Large search space
• Efficient search algorithm
• Smart search scheduling

• Thank you for listening

• Email me to ask follow-up questions: lianminzheng@gmail.com

