
Byzantine Ordered Consensus
without Byzantine Oligarchy

Yunhao Zhang†, Srinath Setty*, Qi Chen*, Lidong Zhou* and Lorenzo Alvisi†

†Cornell University *Microsoft Research

Order manipulation is a scourge

Expressly forbidden…

Bots have reaped from
unsuspecting parties over

$6M in Ethereum!
…but keeps happening!

2

• Promise trustworthy trading platforms.

• Rely on BFT State Machine Replication…

• …and that’s where the vulnerability lies

Permissioned blockchains are vulnerable

3

Oh no! BFT!

It’s worse!

The issue is NOT
with this

James Mickens ™

It affects correctness specification
of state machine replication.

4

State Machine Replication

Safety: The ledgers of correct
replicas hold the same
sequence of commands.

Liveness: Commands from
correct clients eventually
appear in the ledgers of
all correct replicas.

+ BFT: S&L hold even when
faulty nodes are Byzantine.

5

The crux

order does not matter
When it’s about fault-tolerance

order matters!
When it’s about financial transactions

6

Following the leader?

Node 2

Node 1 Node 3

Node 4

Most BFT RSM protocols
are leader-based.

Leader has full control
over the ledger’s order.

Bad if leader is Byzantine.

7

Rotating leaders

Node 2

Node 1 Node 3

Node 4

• Each leader still controls order
of commands in its batch.

• No way to express correctness
conditions on resulting total order.

Yet…

8

• Contribution #1: Expand the BFT SMR specification

• To express ordering requirements rigorously and define ordered consensus

• Contribution #2: Chart the boundaries of Byzantine influence

• To understand which requirements can and cannot be enforced

• Contribution #3: Articulate a new architecture for BFT SMR

• To enforce ordered consensus

• Contribution #4: Design, implement, and evaluate Pompē

• To demonstrate systems based on ordered consensus are practical

Our main contributions

9

#1: Byzantine ordered consensus

node #1 node #2 node #n

my preference:
cmd1 < cmd2 < cmd3

…

my preference:
cmd1 < cmd3 < cmd2

my preference:
cmd3 < cmd1 < cmd2

Example: ordering unanimity
if all correct nodes prefer cmd1 < cmd2,
then cmd1 < cmd2 in the output ledger.

101

Impossibility of unanimity

12

Node 2

Node 1

Node 3

Node 4

cmd1 < cmd2 < cmd3 < cmd4

cmd2 < cmd3 < cmd4 < cmd1

cmd3 < cmd4 < cmd1 < cmd2

cmd4 < cmd1 < cmd2 < cmd3

• The good news: We can prevent Byzantine nodes from
dictating the final total order.

• The bad news : We cannot fully eliminate Byzantine influence.

#2 Understanding the limits of Byzantine sway

my preference:
cmd1 < cmd2 < cmd3

cannot distinguish
correct from Byzantine

my preference:
cmd3 < cmd2 < cmd1

but can still express
useful and natural

ordering guarantees
12

• Expresses ordering preferences as timestamps.

Ordering Linearizability

timestamps by all
correct nodes for cmd1

timestamps by all
correct nodes for cmd2

highest timestamp lowest timestamp

Latest linearization
point for cmd1

Earliest linearization
point for cmd2

13

• Separate Ordering from Consensus

• Ordering phase decides the relative order of commands.

• Prevents Byzantine nodes from controlling ordering.

• Consensus phase periodically decides a prefix of the ledger.

• Can preserve performance benefits of leader-based consensus.

#3: A new architecture for BFT SMR

14

#4: Pompē: order-linearizable SMR

same
ordering phase

different
consensus phase

(HotStuff)
ordering

linearizability

15

two variants of Pompē

Pompē-C:

Pompē-HS:

Building a Byzantine-tolerant timestamp

• Assume 3f+1 nodes, f Byzantine

timestamps by all
correct nodes for cmd1

timestamps by all
correct nodes for cmd2

any 2f+1 timestamps for cmd1

median

any 2f+1 timestamps for cmd2

median

16

Locking the median timestamp

proposer

nodes

round-trip1: collect timestamps
from any 2f+1 nodes

round-trip2: write the median
timestamp to any 2f+1 nodes

command & its order
locked in the ledger

17

• Associates each consensus slot with a time interval.

• Waits until commands issued in current time interval are
locked.

• Collects newly locked commands & their timestamps.

• Uses any SMR protocol to add these commands to the
ledger according to their timestamps.

Consensus phase in Pompē

18

Safe batching in consensus phase

19

order free from
Byzantine leader’s control

leadsleads
[10s, 10.5s)

Pompē

slot#i slot#i+1 …

[10.5s, 11s)

…

order subject to
Byzantine leader’s control

leadsleads

state-of-the-art

slot#201 … slot#400 slot#401 … slot#600

200 commands 200 commands

Batching during the ordering phase

20

• A single timestamp to a batch from the same node

• For the purposes of evaluation:

Baseline

batch size β

Pompē

β/n

β/n β/n

β/n

Pompē vs HotStuff: 4 geo-distributed nodes

21

• There is a fundamental gap between the SMR correctness
spec and the threat from order manipulation in blockchains.

• We introduce a new primitive, ordered consensus, to allow
rigorous expression and efficient enforcement of ordering
requirements.

• We design a modular architecture for ordered consensus
and built Pompē which enforces ordering linearizability with
performance comparable to state-of-the-art systems.

Conclusion

22

Thanks for listening! Any questions?

For further questions,
feel free to contact Yunhao (yz2327@cornell.edu).

• There is a fundamental gap between the SMR correctness spec
and the threat from order manipulation in blockchains.

• We introduce a new primitive, ordered consensus, to allow rigorous
expression and efficient enforcement of ordering requirements.

• We design a modular architecture for ordered consensus and built
Pompē which enforces ordering linearizability with performance
comparable to state-of-the-art.

23

