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Distributed in-memory systems are ubiquitous
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In-memory systems: Pros and cons

High performance.

* Kernel bypass = microsecond-level latency in datacenter.
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Persistent memory (PM) is here
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@ Persimmon
Using PM to add persistence to in-memory storage systems.
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Porting in-memory systems to PM is not trivial
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Challenge: crash consistency for PM

Definition: Operations must persist all-or-nothing.
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Challenge: crash consistency for PM

Definition: Operations must persist all-or-nothing.

Applications typically use logging for atomicity & recoverability.

] Although Redis is highly-optimized for DRAM, porting it
@ Re quires comp lex code. to NVMM is not straightforward and requires large engineer-
ing gw (§ 3]). Our findings were interesting, and in some cases,

with quite surprising. A big takeaway was that this exercise

@ Can incur h |gh overhead. can be surprisingly non-trivial. The required lower level
changes were contagious and quickly became pervasive.

How to use PM to provide persistence with minimal
programming effort and performance overhead?



Key insight

In-memory storage systems are state machines
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State machine properties:

* Encapsulate state.

* Have atomic operations.

* Execute operations deterministically.



Solution: State machines as PM abstraction
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@ Encapsulates persistent state for recovery.
@ State machine operation = units of persistence.

@ Determinism =2 persistence via operation logging.



Outline

* Persimmon overview: APl and guarantees



The Persimmon system

* A user-level runtime system that provides persistence to in-memory
state machine applications.

* Keep 2 copies of state machine: one in DRAM, one in PM.

* On RPC-handling path: state machine operation logging.
* Persistence with low latency overhead!

* In the background: shadow execution on PM state machine.
* For crash consistency: Dynamically instrumented for undo logging.

DRAM PM
State State
Machine Machine




Application model: State machine
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State machine operations are arbitrary application code that:
* Do not have external dependencies.

* Execute deterministically.

* Have no external side-effects.

Assumption: operations are applied sequentially.



Persistent State Machine (PSM) AP

e psm_init() - bool —Initialize; return true if in recovery.
 psm_invoke rw(op) — Invoke read-write op with persistence.
 psm_invoke ro(op) — Invoke read-only op without persistence.



Persistent State Machine (PSM) guarantees

* Linearizability: All PSM operations are run in order submitted.
* Durability: PSM operations are never lost once they return.

* Failure atomicity: If crash before PSM operations, recover to state
either before or after.



Persimmon design: Pros and cons

@ Low programming effort @ Requires two CPU cores, 2x space.

@ Low latency overhead @ Shadow execution: throughput bottleneck?



Outline

* Persimmon runtime: Desigh and implementation



Persimmon runtime
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Persimmon runtime
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Shadow execution




Shadow execution >

State machine operation
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Dynamic instrumentation for undo logging

State machine operation
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Recovery using the undo log

State machine operation
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Optimizations for undo logging

* Undo-log in 32B blocks.

* De-duplication: log each block only once.



Application crash recovery
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Outline

* Evaluation: Programming experience and performance



Persimmon requires little code modification

Lines added / changed

Redis TAPIR

Initialize Persimmon 7 10

Factor out state machine init. 36 34
Serialize state machine operation 26 12
Deserialize & execute operation 45 25
Check for read-only operations 1 1
Refactor for better performance N/A 57

Total 115 139




Redis performance experiment setup

Arista 7060CX 100 Gbps

= = Il oo
qumﬂl = ubuntu
Client Server
. gﬂoe”ano’é CXI'S 1?(0 G;ps NS',(IZS «  Mellanox CX-5 100 Gbps NICs
core dual-socket feon Sllver * 52-core dual-socket Intel Xeon Platinum
 3TB of Intel Optane DC PMM (app direct)
e 768 GB of DRAM
“Vanilla” Kernel bypass

é * Networking: Linux TCP Networking: DPDK UDP
redls e Memory allocator: jemalloc  * Memory allocator: Hoard



Redis is fast (and persistent) under Persimmon
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Persimmon performance depends on write percentage

Redis on Linux Redis with kernel bypass
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Persimmon recovers quickly
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(Read/write workload, 130 million key-value pairs)
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Conclusion

* Persistent State Machines (PSM): a useful persistent memory
abstraction for in-memory applications.

* Persimmon uses operation logging + shadow execution to achieve
fast, low-effort persistence.

* Persimmon can persist Redis with ~100 LoC change and 5-7%
performance overhead on a typical workload.

Thank you!
Wen Zhang <zhangwen@cs.berkeley.edu>
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