Persistent State Machines for
Recoverable In-memory Storage
Systems with NVRam

Wen Zhang Scott Shenker Irene Zhang

UC Berkeley UC Berkeley Microsoft Research
|CSI University of Washington



Distributed in-memory systems are ubiquitous

Building Consistent Transactions with Inconsistent Replication

Irene Zhang  Naveen Kr. Sharma  Adriana Szekeres
Arvind Krishnamurthy = Dan R. K. Ports

Memcached

Just Say NO to Paxos Overhead:
Replacing Consensus with Network Ordering

Jialin Li Ellis Michael Naveen Kr. Sharma Adriana Szekeres Dan R. K. Ports

redis



In-memory systems: Pros and cons

High performance.

* Kernel bypass = microsecond-level latency in datacenter.

4.3 Cold Cluster Warmup

N O pe rs I Ste n Ce ¢ When we bring a new cluster online, an existing one

. . fails, or perform scheduled maintenance the caches will

* Node failure =» recover from replica or storage. have very poor hit rates diminishing the abilty to in-
sulate backend services. A system called Cold Clus-

. 9 . ter Warmup mitigates this by allowing clients in the

° Data Center fa I I ure pOte ntlal data IOSS- “cold cluster” (i.e. the frontend cluster that has an empty
cache) to retrieve data from the “warm cluster” (i.e. a

cluster that has caches with normal hit rates) rather than

the persistent storage. This takes advantage of the afore-

FA mentioned data replication that happens across frontend
A clusters. With this systgmmeetdaglusters can ho-brewgh
Pe‘.s\gteﬂce back to full capacity i @ nstead o




Persistent memory (PM) is here

!

Caches

.

J

DRAM

@ Persistent

(00000} (00000}

PM

(inted OPTANE

PERSISTENT MEMORY

% High performance



@ Persimmon
Using PM to add persistence to in-memory storage systems.



Outline

* Background: Challenges and key insight
* Persimmon overview: APl and guarantees
* Persimmon runtime: Desigh and implementation

* Evaluation: Programming experience and performance



Outline

* Background: Challenges and key insight



Porting in-memory systems to PM is not trivial

+ @

Redis (iﬁéD ) OPTANE DCO» Persistent
PERSISTENT MEMORY Redis




Challenge: crash consistency for PM

Definition: Operations must persist all-or-nothing.

47 0x2000

0x2000

00000 4

Persistent memory



Challenge: crash consistency for PM

Definition: Operations must persist all-or-nothing.

Applications typically use logging for atomicity & recoverability.

] Although Redis is highly-optimized for DRAM, porting it
@ Re quires comp lex code. to NVMM is not straightforward and requires large engineer-
ing gw (§ 3]). Our findings were interesting, and in some cases,

with quite surprising. A big takeaway was that this exercise

@ Can incur h |gh overhead. can be surprisingly non-trivial. The required lower level
changes were contagious and quickly became pervasive.

How to use PM to provide persistence with minimal
programming effort and performance overhead?



Key insight

In-memory storage systems are state machines

INCR x

v

5

State machine properties:

* Encapsulate state.

* Have atomic operations.

* Execute operations deterministically.



Solution: State machines as PM abstraction

INCR x

5

@ Encapsulates persistent state for recovery.
@ State machine operation = units of persistence.

@ Determinism =2 persistence via operation logging.



Outline

* Persimmon overview: APl and guarantees



The Persimmon system

* A user-level runtime system that provides persistence to in-memory
state machine applications.

* Keep 2 copies of state machine: one in DRAM, one in PM.

* On RPC-handling path: state machine operation logging.
* Persistence with low latency overhead!

* In the background: shadow execution on PM state machine.
* For crash consistency: Dynamically instrumented for undo logging.

DRAM PM
State State
Machine Machine




Application model: State machine

INCR x

v

A

5

State machine operations are arbitrary application code that:
* Do not have external dependencies.

* Execute deterministically.

* Have no external side-effects.

Assumption: operations are applied sequentially.



Persistent State Machine (PSM) AP

e psm_init() - bool —Initialize; return true if in recovery.
 psm_invoke rw(op) — Invoke read-write op with persistence.
 psm_invoke ro(op) — Invoke read-only op without persistence.



Persistent State Machine (PSM) guarantees

* Linearizability: All PSM operations are run in order submitted.
* Durability: PSM operations are never lost once they return.

* Failure atomicity: If crash before PSM operations, recover to state
either before or after.



Persimmon design: Pros and cons

@ Low programming effort @ Requires two CPU cores, 2x space.

@ Low latency overhead @ Shadow execution: throughput bottleneck?



Outline

* Persimmon runtime: Desigh and implementation



Persimmon runtime

20

Application Process

Network 1/0

DRAM

State
Machine

Persimmon Runtime

Shared Memory

Persistent Op Log

Shadow Process

PM

State
Machine

Persimmon Runtime




Persimmon runtime

RPC

Application Process

v

Network 1/0

A

21

invoke

executel insert

DRAM

State
Machine

Persimmon Runtime

Shared Memory

Persistent Op Log

Shadow Process

shadow PM
exec
—> State

Machine

Persimmon Runtime




Shadow execution




Shadow execution >

State machine operation

= Mov $42, 0x2000 42 0x2000

lEIIIIEIEIEI]

Persistent memory
CPU Caches

23



Dynamic instrumentation for undo logging

State machine operation

(log 0x2000) 42 0x2000 0 0x2000
= MOV $42, 0x2000

Undo log

0 0x2000

¥ 0000

Persistent memory
CPU Caches

24



Recovery using the undo log

State machine operation

—)

(log 0x2000) 42 0x2000
mov $42, 0x2000

Undo log

0 0x2000

lEIEIEIEIEIj

Persistent memory
CPU Caches




Optimizations for undo logging

* Undo-log in 32B blocks.

* De-duplication: log each block only once.



Application crash recovery

Application Process Shadow Process

RPC

v

Network 1/0

A

copy |
e
Shared Memory

PM
State
Machine

| shadow

DRAM

State
Machine

Persistent Op Log

Persimmon Runtime Persimmon Runtime




Outline

* Evaluation: Programming experience and performance



Persimmon requires little code modification

Lines added / changed

Redis TAPIR

Initialize Persimmon 7 10

Factor out state machine init. 36 34
Serialize state machine operation 26 12
Deserialize & execute operation 45 25
Check for read-only operations 1 1
Refactor for better performance N/A 57

Total 115 139




Redis performance experiment setup

Arista 7060CX 100 Gbps

= = Il oo
qumﬂl = ubuntu
Client Server
. gﬂoe”ano’é CXI'S 1?(0 G;ps NS',(IZS «  Mellanox CX-5 100 Gbps NICs
core dual-socket feon Sllver * 52-core dual-socket Intel Xeon Platinum
 3TB of Intel Optane DC PMM (app direct)
e 768 GB of DRAM
“Vanilla” Kernel bypass

é * Networking: Linux TCP Networking: DPDK UDP
redls e Memory allocator: jemalloc  * Memory allocator: Hoard



Redis is fast (and persistent) under Persimmon

20
18
16
14
12
1

o

o N B OO

Median latency (pus)

Linux

W No Persistence

W Persimmon

7% overhead

Kernel bypass

m AOF (Redis logging)

500
450
400
350
300
50
00
5
0
5

B R NN
S O

o

Throughput (Kops)

3.3X
I I iz.lx

Linux

H No Persistence

W Persimmon

(Read/write workload, 10% writes, Zipf constant = 0.75, 130 million key-value pairs)

31

5% overhead

Kernel Bypass

m AOF (Redis logging)



Persimmon performance depends on write percentage

Redis on Linux Redis with kernel bypass
Peak throughput (Mops) Peak throughput (Mops)
0.5 : : 0.5 : :
I I M
| I
0.4 I 1 0.4 |
| I | I
| I | I
0.3 ! ' 0.3 ! !
| I | I
) | I | I
05 W v : :
| I | I
| I I I
0.1 , . 0.1 : .
| I | I
| I | I
0 : : 0 : :
0 20 40 60 80 100 0 20 40 60 80 100
Write percentage (%) Write percentage (%)
—e—No persistence ~ —e—Persimmon AOF (Redis logging) —e—No persistence  —e—Persimmon AOF (Redis logging)

32



Persimmon recovers quickly

100

(Read/write workload, 130 million key-value pairs)

33

9
8
7
6
5
4
3
2
1

O O O OO o o o o o

Recovery time (s)

I I 6X I I )

Linux

m Redis AOF

Kernel Bypass

m Redis RDB m Persimmon

35

30

25

20

15

10

w

Storage size (GB)

Linux Kernel Bypass

m Redis AOF mRedis RDB m Persimmon



Conclusion

* Persistent State Machines (PSM): a useful persistent memory
abstraction for in-memory applications.

* Persimmon uses operation logging + shadow execution to achieve
fast, low-effort persistence.

* Persimmon can persist Redis with ~100 LoC change and 5-7%
performance overhead on a typical workload.

Thank you!
Wen Zhang <zhangwen@cs.berkeley.edu>



mailto:zhangwen@cs.berkeley.edu

