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Deep Neural Network Becomes Prevalent

• DNN models are being adopted in Cloud 
and Edge

• More and more cloud/edge applications 
are powered by DNN techniques

• Important to design a good DNN model
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DNN Model Design: An Exploration Process
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DNN Model Design: An Exploration Process
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We call this process Exploratory-Training

One-shot v.s. Exploratory



Examples of Exploratory-Training
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Weak Support to Exploratory-Training

• Existing deep learning frameworks focus on one single DNN model
• Just one step of the entire exploratory-training process

• Tools for model exploration lack of modularity and programmability
• Neural architecture search (NAS) or hyperparameter optimization (HPO)

• One NAS/HPO solution only applicable to one kind of neural architectures

• Missed opportunities to speed up the model exploration process
• Exploiting model similarities during the exploratory-training
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Rethinking DNN Framework

No framework Deep learning framework Exploratory-Training framework

Programming with 
libraries

Making programming a DNN 
model easier and faster

Making DNN model exploring 
easier and faster
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The Goal of Retiarii

• A deep learning framework for exploratory-training, instead of the 
development of a single DNN model

• Making model exploration more systematic and programmable

• The go-to DNN framework when one designs a new DNN model

10https://github.com/microsoft/nni
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The Key Insight

• Exploratory-training can be treated as a series of model mutation in a 
neural model space
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Mutator as the Core Abstraction

Defining arbitrary model space
with mutators

The model space can be understood 
by exploration strategy

Exposing the correlations between 
models for cross-model optimizations

Mutator

Decoupling model space from model exploration  
strategy, while enabling both well-known and new 
cross-model optimizations
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The Highlights of Retiarii

• Mutator-based programming paradigm
• Programming a model space, instead of programming a single model

• Highly composable between model space and exploration strategy
• The decision of each mutation action in a model space during the exploratory-training 

is given to an exploration strategy (AutoML) or human (manual exploration)

• Different exploration strategy can interact with different model space

• Exploiting rich optimizations exposed by model mutation
• Speed up the exploration process by leveraging the similarity of explored models

13https://github.com/microsoft/nni
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Mutator-Based Programming Paradigm

• Model Space = Base Model + Mutators
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Mutator-Based Programming Paradigm

• Model Space = Base Model + Mutators
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Mutator-Based Programming Paradigm
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Mutator-Based Programming Paradigm

• Define and Apply Mutator

conv relu dense

“model/conv”

“model/relu” “model/dense”

An example model space:  the third node in a four-node base 
model is replaced with an inception cell
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Mutator-Based Programming Paradigm

• Define and Apply Mutator

conv relu dense

“model/conv”

“model/relu” “model/dense”

An example model space:  the third node in a four-node base 
model is replaced with an inception cell
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Mutator-Based Programming Paradigm

• Define and Apply Mutator

conv relu dense

“model/conv”

“model/relu” “model/dense”

An example model space:  the third node in a four-node base 
model is replaced with an inception cell
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Interaction between Model Space and 
Exploration Strategy

Exploratory-Training 
of a model space

… …
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model weights?

• … …
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… … Gradient-
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algorithm
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Exploration strategies

• Which models in the model 
space to try first?

• How long to train each model?

• Whether to share or inherit 
model weights?

• … …



System Architecture

• Instantiate model following user specified 
model space

• Get suggestions from exploration strategy to 
instantiate models

• Optimize instantiated models to do model 
batching, merging and weight sharing

• Retrieve training feedbacks to feed in 
exploration strategy
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Expressiveness and Reusability

• The table shows 8 out of 27 NAS solutions currently supported by Retiarii

27Our open-sourced code: https://github.com/microsoft/nni/tree/retiarii_artifact
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Exploiting Rich Optimizations

• There are plenty of optimization opportunities in Exploratory-Training
• The same training data

• The same data preprocessing

• Similar neural architectures (e.g., common layers)

• Weights shared among models

• Cross-model optimizations enabled with tracked correlations
• Common sub-expression elimination (CSE)

• Mixed parallelism for weight sharing

• Operator batching

28



Common Sub-expression Elimination (CSE)
• De-duplicating CPU-based common prefix operations
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MnasNet0.5 BatchSize=224; four V100 GPUs

3.4x



Common Sub-expression Elimination (CSE)
• CSE + Device Placement for GPU-based Embedding (e.g., BERT)

31
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Common Sub-expression Elimination (CSE)
• CSE + Device Placement for GPU-based Embedding (e.g., BERT)
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Common Sub-expression Elimination (CSE)
• CSE + Device Placement for GPU-based Embedding (e.g., BERT)
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Operator Batching

• De-duplicate common layers with different input
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Please refer to our paper for details



End-to-End Experiment

Speeding up Neural Architecture Search (NAS)

• Three famous NAS solutions

• Time-consuming: they all need to explore over a large search space.

• Baselines
• Exclusive execution: trains one model per GPU at a time

• Packing: trains multiple models per GPU using NVIDIA CUDA MPS
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NAS Solution Search Space Exploration Strategy

MnasNet [1] Factorized Hierarchical Search Space Reinforcement Learning

NASNet [2] Normal Cell + Reduction Cell Reinforcement Learning

AmoebaNet [3] Normal Cell + Reduction Cell Evolutionary Algorithm

[1] Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV. Mnasnet: Platform-aware neural architecture search for mobile. CVPR 2019

[2] Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. CVPR 2018

[3] Real E, Aggarwal A, Huang Y, Le QV. Regularized evolution for image classifier architecture search. AAAI 2019

Explore 1000 models on 4 V100 w/ 1 epoch training on ImageNet for each model
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2.57x

• Retiarii achieves up to 2.57 times speed up on three typical NAS solutions
• Performance gain mainly from packing and CSE

• Simultaneously run up to 22 of MnasNet models when Batch Size is 32

End-to-End Experiment

Speeding up Neural Architecture Search (NAS)
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End-to-End Experiment

Speeding up Weight-Shared Training
• What is Weight Sharing?

conv_3x3

(1) ReLU
(2) Identity
(3) LeakyReLU

densemaxpool

Search Space

Trial #1
1

conv_3x3

ReLu

densemaxpool



38

End-to-End Experiment
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End-to-End Experiment
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End-to-End Experiment

Speeding up Weight-Shared Training
• What is Weight Sharing?
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• Building a Super-Graph to encode the search space
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End-to-End Experiment

Speeding up Weight-Shared Training
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• Optimization of Super-Graph
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End-to-End Experiment

Speeding up Weight-Shared Training
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6.52x

Limited search space size!
Hard to scale to a large GPU cluster!



• Retiarii’s Mixed Parallelism: 
• Model Parallelism: partitions the super-graph to multiple GPUs

• Data Parallelism: feeds each partition with a different batch of data

43

End-to-End Experiment

Speeding up Weight-Shared Training



• Retiarii’s mixed parallelism greatly reduces exploratory-training time (only 7.45 hours)
• A famous weight-shared NAS: SPOS [1]

• 8.58x speed-up over Data Parallel training w/ SyncBN on 8 V100 GPUs

• Almost the same validation accuracy 
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8.58x

[1] Guo Z, Zhang X, Mu H, Heng W, Liu Z, Wei Y, Sun J. Single path one-shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420. 2019 Mar 31.

End-to-End Experiment

Speeding up Weight-Shared Training



Conclusion

• Retiarii is a new DNN framework designed for exploratory-training

• Retiarii provides new interfaces for DNN model developers to      
design & explore new models efficiently

• The simple but powerful Mutator abstraction
• Expressiveness

• Reusability of exploration strategies

• Enabling cross-model optimization

45https://github.com/microsoft/nni
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Thanks! Q&A

No framework Deep learning framework Exploratory-Training framework

Programming with 
libraries

Making programming a DNN 
model easier and faster

Making DNN model exploring 
easier and faster

Retiarii on NNI
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