
Retiarii: A Deep Learning Exploratory-Training Framework

Quanlu Zhang, Zhenhua Han, Fan Yang, Yuge Zhang, Zhe Liu, Mao Yang, Lidong Zhou

Microsoft Research

14th USENIX Symposium on Operating Systems Design and Implementation (OSDI '20)

Deep Neural Network Becomes Prevalent

• DNN models are being adopted in Cloud
and Edge

• More and more cloud/edge applications
are powered by DNN techniques

• Important to design a good DNN model

2

DNN Model Design: An Exploration Process

3

Big Data Tasks Deep learning tasks

Results

+

The found
best one

One-shot v.s. Exploratory

DNN Model Design: An Exploration Process

4

Big Data Tasks Deep learning tasks

Results

+

The found
best one

We call this process Exploratory-Training

One-shot v.s. Exploratory

Examples of Exploratory-Training

Replace Try skip
connection

Rule-based
replace

Rule-based
insert

5

Examples of Exploratory-Training

Replace Try skip
connection

Rule-based
replace

Rule-based
insert

Input

concate

1x1

conv
3x3

conv
5x5

conv
3x3

max_pool

Generalize
Input

concate

… …

6

Examples of Exploratory-Training

Replace Try skip
connection

Rule-based
replace

Rule-based
insert

Input

concate

1x1

conv
3x3

conv
5x5

conv
3x3

max_pool

Generalize
Input

concate

… …

Evolving
Step 1

Evolving
Step 2

Evolving
Step 3

7

Weak Support to Exploratory-Training

• Existing deep learning frameworks focus on one single DNN model
• Just one step of the entire exploratory-training process

• Tools for model exploration lack of modularity and programmability
• Neural architecture search (NAS) or hyperparameter optimization (HPO)

• One NAS/HPO solution only applicable to one kind of neural architectures

• Missed opportunities to speed up the model exploration process
• Exploiting model similarities during the exploratory-training

8

Rethinking DNN Framework

No framework Deep learning framework Exploratory-Training framework

Programming with
libraries

Making programming a DNN
model easier and faster

Making DNN model exploring
easier and faster

9

The Goal of Retiarii

• A deep learning framework for exploratory-training, instead of the
development of a single DNN model

• Making model exploration more systematic and programmable

• The go-to DNN framework when one designs a new DNN model

10https://github.com/microsoft/nni

https://github.com/microsoft/nni

The Key Insight

• Exploratory-training can be treated as a series of model mutation in a
neural model space

Replace Try skip
connection

Rule-based
replace

Rule-based
insert

Input

concate

1x1

conv
3x3

conv
5x5

conv
3x3

max_pool

Generalize
Input

concate

… …

Evolving
Step 1

Evolving
Step 2

Evolving
Step 3

11

Mutator as the Core Abstraction

Defining arbitrary model space
with mutators

The model space can be understood
by exploration strategy

Exposing the correlations between
models for cross-model optimizations

Mutator

Decoupling model space from model exploration
strategy, while enabling both well-known and new
cross-model optimizations

12

The Highlights of Retiarii

• Mutator-based programming paradigm
• Programming a model space, instead of programming a single model

• Highly composable between model space and exploration strategy
• The decision of each mutation action in a model space during the exploratory-training

is given to an exploration strategy (AutoML) or human (manual exploration)

• Different exploration strategy can interact with different model space

• Exploiting rich optimizations exposed by model mutation
• Speed up the exploration process by leveraging the similarity of explored models

13https://github.com/microsoft/nni

https://github.com/microsoft/nni

Mutator-Based Programming Paradigm

• Model Space = Base Model + Mutators

conv relu densemaxpool

“model/conv”

“model/relu”

“model/maxpool”

“model/dense”

14

Mutator-Based Programming Paradigm

• Model Space = Base Model + Mutators

?

?

?

…

Inception cell

path 1

path n

path 2

? : Conv | DepthwiseConv | MaxPool

n : a number from 2 to 5

conv relu densemaxpool

mutate node “model/maxpool”

“model/conv”

“model/relu”

“model/maxpool”

“model/dense”

An example model space: the third node in a four-node base
model is replaced with an inception cell 15

Mutator-Based Programming Paradigm

• Define and Apply Mutator

conv relu densemaxpool

“model/conv”

“model/relu”

“model/maxpool”

“model/dense”

An example model space: the third node in a four-node base
model is replaced with an inception cell

16

Mutator-Based Programming Paradigm

• Define and Apply Mutator

conv relu densemaxpool

“model/conv”

“model/relu”

“model/maxpool”

“model/dense”

An example model space: the third node in a four-node base
model is replaced with an inception cell

17

Mutator-Based Programming Paradigm

• Define and Apply Mutator

conv relu dense

“model/conv”

“model/relu” “model/dense”

An example model space: the third node in a four-node base
model is replaced with an inception cell

18

Two paths

Mutator-Based Programming Paradigm

• Define and Apply Mutator

conv relu dense

“model/conv”

“model/relu” “model/dense”

An example model space: the third node in a four-node base
model is replaced with an inception cell

19

Conv

MaxPool

Mutator-Based Programming Paradigm

• Define and Apply Mutator

conv relu dense

“model/conv”

“model/relu” “model/dense”

An example model space: the third node in a four-node base
model is replaced with an inception cell

20

Conv

MaxPool

Interaction between Model Space and
Exploration Strategy

Exploratory-Training
of a model space

… …

Exploration strategies

• Which models in the model
space to try first?

• How long to train each model?

• Whether to share or inherit
model weights?

• … …

Grid search Evolution
algorithm

Reinforcement
learning

Bayesian
model

… … Gradient-
based search

Annealing
algorithm

21

Interaction between Model Space and
Exploration Strategy

Exploratory-Training
of a model space

… … Grid search Evolution
algorithm

Reinforcement
learning

Bayesian
model

… … Gradient-
based search

Annealing
algorithmExploration

strategies are
reusable

22

Exploration strategies

• Which models in the model
space to try first?

• How long to train each model?

• Whether to share or inherit
model weights?

• … …

System Architecture

• Instantiate model following user specified
model space

• Get suggestions from exploration strategy to
instantiate models

• Optimize instantiated models to do model
batching, merging and weight sharing

• Retrieve training feedbacks to feed in
exploration strategy

JIT Engine

Apply
Mutators

Target Model

Base Model

MutatorMutatorMutator

Cross-Model
Optimization

Model Space

Raw DFGsRaw DFGsRaw DFGsRaw DFGs

Optimized DFGsOptimized DFGs

Model Training

Exploration
Engine

Instantiation
Control

Choice Suggestion

Feedbacks

Start/Stop

Training Control

Model Exploration
Strategy

Input to Exploratory-Training

23

System Architecture

• Instantiate model following user specified
model space

• Get suggestions from exploration strategy to
instantiate models

• Optimize instantiated models to do model
batching, merging and weight sharing

• Retrieve training feedbacks to feed in
exploration strategy

JIT Engine

Apply
Mutators

Target Model

Base Model

MutatorMutatorMutator

Cross-Model
Optimization

Model Space

Raw DFGsRaw DFGsRaw DFGsRaw DFGs

Optimized DFGsOptimized DFGs

Model Training

Exploration
Engine

Instantiation
Control

Choice Suggestion

Feedbacks

Start/Stop

Training Control

Model Exploration
Strategy

Input to Exploratory-Training

24

System Architecture

• Instantiate model following user specified
model space

• Get suggestions from exploration strategy to
instantiate models

• Optimize instantiated models to do model
batching, merging and weight sharing

• Retrieve training feedbacks to feed in
exploration strategy

JIT Engine

Apply
Mutators

Target Model

Base Model

MutatorMutatorMutator

Cross-Model
Optimization

Model Space

Raw DFGsRaw DFGsRaw DFGsRaw DFGs

Optimized DFGsOptimized DFGs

Model Training

Exploration
Engine

Instantiation
Control

Choice Suggestion

Feedbacks

Start/Stop

Training Control

Model Exploration
Strategy

Input to Exploratory-Training

25

System Architecture

• Instantiate model following user specified
model space

• Get suggestions from exploration strategy to
instantiate models

• Optimize instantiated models to do model
batching, merging and weight sharing

• Retrieve training feedbacks to feed in
exploration strategy

JIT Engine

Apply
Mutators

Target Model

Base Model

MutatorMutatorMutator

Cross-Model
Optimization

Model Space

Raw DFGsRaw DFGsRaw DFGsRaw DFGs

Optimized DFGsOptimized DFGs

Model Training

Exploration
Engine

Instantiation
Control

Choice Suggestion

Feedbacks

Start/Stop

Training Control

Model Exploration
Strategy

Input to Exploratory-Training

26

Expressiveness and Reusability

• The table shows 8 out of 27 NAS solutions currently supported by Retiarii

27Our open-sourced code: https://github.com/microsoft/nni/tree/retiarii_artifact

https://github.com/microsoft/nni/tree/retiarii_artifact

Exploiting Rich Optimizations

• There are plenty of optimization opportunities in Exploratory-Training
• The same training data

• The same data preprocessing

• Similar neural architectures (e.g., common layers)

• Weights shared among models

• Cross-model optimizations enabled with tracked correlations
• Common sub-expression elimination (CSE)

• Mixed parallelism for weight sharing

• Operator batching

28

Common Sub-expression Elimination (CSE)
• De-duplicating CPU-based common prefix operations

input

preprocessing

embedding

layer_0 layer_0 layer_0 layer_0

layer_1 layer_1 layer_1 layer_1

layer_2 layer_2 layer_2 layer_2

… … … …

GPU 1
(Graph-1)

CPU

GPU 2
(Graph-2)

GPU 3
(Graph-3)

GPU 4
(Graph-4)

Non-trainable Operator

Trainable Operator

layer_0 layer_0 layer_0 layer_0

layer_1 layer_1 layer_1 layer_1

layer_2 layer_2 layer_2 layer_2

… … … …

GPU 1
(Graph-1)

GPU 2
(Graph-2)

GPU 3
(Graph-3)

GPU 4
(Graph-4)

Non-trainable Operator

Trainable Operator

input

preprocessing

embedding

input

preprocessing

embedding

input

preprocessing

embedding

input

preprocessing

embedding

CPU

Contention on CPU

CSE Optimize

Common Sub-expression Elimination (CSE)
• De-duplicating CPU-based common prefix operations

input

preprocessing

embedding

layer_0 layer_0 layer_0 layer_0

layer_1 layer_1 layer_1 layer_1

layer_2 layer_2 layer_2 layer_2

… … … …

GPU 1
(Graph-1)

CPU

GPU 2
(Graph-2)

GPU 3
(Graph-3)

GPU 4
(Graph-4)

Non-trainable Operator

Trainable Operator

layer_0 layer_0 layer_0 layer_0

layer_1 layer_1 layer_1 layer_1

layer_2 layer_2 layer_2 layer_2

… … … …

GPU 1
(Graph-1)

GPU 2
(Graph-2)

GPU 3
(Graph-3)

GPU 4
(Graph-4)

Non-trainable Operator

Trainable Operator

input

preprocessing

embedding

input

preprocessing

embedding

input

preprocessing

embedding

input

preprocessing

embedding

CPU

Contention on CPU

CSE Optimize

CSE of CPU-based operations

MnasNet0.5 BatchSize=224; four V100 GPUs

3.4x

Common Sub-expression Elimination (CSE)
• CSE + Device Placement for GPU-based Embedding (e.g., BERT)

31

input

preprocessing

BERT
Embedding

layer_0 layer_0 layer_0

layer_1 layer_1 layer_1

layer_2 layer_2 layer_2
… … …

GPU 1
GPU 2

(Graph-1)

CPU

Non-trainable Operator

Trainable Operator

(Graph-2) (Graph-3)

GPU 3
(Graph-4)

layer_0

layer_1

layer_2

…

……

layer_0 layer_0 layer_0 layer_0

layer_1 layer_1 layer_1 layer_1

GPU 1
(Graph-1)

GPU 2
(Graph-2)

GPU 3
(Graph-3)

GPU 4
(Graph-4)

Non-trainable Operator

Trainable Operator

input

preprocessing

BERT
Embedding

input

preprocessing

BERT
Embedding

input

preprocessing

BERT
Embedding

input

preprocessing

BERT
Embedding

CPU

CSE Optimize

… … … …

Common Sub-expression Elimination (CSE)
• CSE + Device Placement for GPU-based Embedding (e.g., BERT)

32

input

preprocessing

BERT
Embedding

layer_0 layer_0 layer_0

layer_1 layer_1 layer_1

layer_2 layer_2 layer_2
… … …

GPU 1
GPU 2

(Graph-1)

CPU

Non-trainable Operator

Trainable Operator

(Graph-2) (Graph-3)

GPU 3
(Graph-4)

layer_0

layer_1

layer_2

…

……

layer_0 layer_0 layer_0 layer_0

layer_1 layer_1 layer_1 layer_1

GPU 1
(Graph-1)

GPU 2
(Graph-2)

GPU 3
(Graph-3)

GPU 4
(Graph-4)

Non-trainable Operator

Trainable Operator

input

preprocessing

BERT
Embedding

input

preprocessing

BERT
Embedding

input

preprocessing

BERT
Embedding

input

preprocessing

BERT
Embedding

CPU

CSE Optimize

… … … …

BERT Model

BERT Model

BERT Model

BERT Model

Time

GPU-0

GPU-1

GPU-2

GPU-3

BERT

Time

GPU-0

GPU-1

GPU-2

GPU-3

Model ModelModel Model

Model ModelModel Model

Model ModelModel Model

Common Sub-expression Elimination (CSE)
• CSE + Device Placement for GPU-based Embedding (e.g., BERT)

33

input

preprocessing

BERT
Embedding

layer_0 layer_0 layer_0

layer_1 layer_1 layer_1

layer_2 layer_2 layer_2
… … …

GPU 1
GPU 2

(Graph-1)

CPU

Non-trainable Operator

Trainable Operator

(Graph-2) (Graph-3)

GPU 3
(Graph-4)

layer_0

layer_1

layer_2

…

……

layer_0 layer_0 layer_0 layer_0

layer_1 layer_1 layer_1 layer_1

GPU 1
(Graph-1)

GPU 2
(Graph-2)

GPU 3
(Graph-3)

GPU 4
(Graph-4)

Non-trainable Operator

Trainable Operator

input

preprocessing

BERT
Embedding

input

preprocessing

BERT
Embedding

input

preprocessing

BERT
Embedding

input

preprocessing

BERT
Embedding

CPU

CSE Optimize

… … … …

BERT

Time

GPU-0

GPU-1

GPU-2

GPU-3

Model ModelModel Model

Model ModelModel Model

Model ModelModel Model

BERT Model

BERT Model

BERT Model

BERT Model

Time

GPU-0

GPU-1

GPU-2

GPU-3

CSE of GPU-based BERT

TextNAS on SST dataset

1.97x

Operator Batching

• De-duplicate common layers with different input

34

Non-trainable Operator Trainable Operator

Mutated Graph 0 Mutated Graph 1

ReLU

conv_3x3

conv_3x3

adapter

ReLU

conv_3x3

conv_3x3

batch_ReLU

batch_conv_3x3

adapter

batch_conv_3x3

batch

conv_3x3

unbatch

… … … …

… …

… … …

… …

Please refer to our paper for details

End-to-End Experiment

Speeding up Neural Architecture Search (NAS)

• Three famous NAS solutions

• Time-consuming: they all need to explore over a large search space.

• Baselines
• Exclusive execution: trains one model per GPU at a time

• Packing: trains multiple models per GPU using NVIDIA CUDA MPS

35

NAS Solution Search Space Exploration Strategy

MnasNet [1] Factorized Hierarchical Search Space Reinforcement Learning

NASNet [2] Normal Cell + Reduction Cell Reinforcement Learning

AmoebaNet [3] Normal Cell + Reduction Cell Evolutionary Algorithm

[1] Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV. Mnasnet: Platform-aware neural architecture search for mobile. CVPR 2019

[2] Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. CVPR 2018

[3] Real E, Aggarwal A, Huang Y, Le QV. Regularized evolution for image classifier architecture search. AAAI 2019

Explore 1000 models on 4 V100 w/ 1 epoch training on ImageNet for each model

36

2.57x

• Retiarii achieves up to 2.57 times speed up on three typical NAS solutions
• Performance gain mainly from packing and CSE

• Simultaneously run up to 22 of MnasNet models when Batch Size is 32

End-to-End Experiment

Speeding up Neural Architecture Search (NAS)

37

End-to-End Experiment

Speeding up Weight-Shared Training
• What is Weight Sharing?

conv_3x3

(1) ReLU
(2) Identity
(3) LeakyReLU

densemaxpool

Search Space

Trial #1
1

conv_3x3

ReLu

densemaxpool

38

End-to-End Experiment

Speeding up Weight-Shared Training
• What is Weight Sharing?

conv_3x3

(1) ReLU
(2) Identity
(3) LeakyReLU

densemaxpool

Search Space

Trial #1
1

conv_3x3

ReLu

densemaxpool

Trial #2
2

Identity

densemaxpoolconv_3x3

39

End-to-End Experiment

Speeding up Weight-Shared Training
• What is Weight Sharing?

conv_3x3

(1) ReLU
(2) Identity
(3) LeakyReLU

densemaxpool

Search Space

Trial #1
1

conv_3x3

ReLu

densemaxpool

Trial #2
2

Identity

densemaxpool

Trial #3
3

LeakyReLU

densemaxpool

conv_3x3

conv_3x3

40

End-to-End Experiment

Speeding up Weight-Shared Training
• What is Weight Sharing?

conv_3x3

(1) ReLU
(2) Identity
(3) LeakyReLU

densemaxpool

Search Space

Trial #1
1

conv_3x3

ReLu

densemaxpool

Trial #2
2

Identity

densemaxpool

Trial #3
3

LeakyReLU

densemaxpool

conv_3x3

conv_3x3

• Building a Super-Graph to encode the search space

41

End-to-End Experiment

Speeding up Weight-Shared Training

conv_3x3

(1) ReLU
(2) Identity
(3) LeakyReLU

densemaxpool

Search Space

1

conv_3x3 densemaxpool

Super-Graph

2

3

ReLU

Identity

LeakyReLU

Building as
a super-graph

• Optimization of Super-Graph

42

End-to-End Experiment

Speeding up Weight-Shared Training

conv_3x3

(1) ReLU
(2) Identity
(3) LeakyReLU

densemaxpool

Search Space

1

conv_3x3 densemaxpool

Super-Graph

2

3

ReLU

Identity

LeakyReLU

Building as
a super-graph

6.52x

Limited search space size!
Hard to scale to a large GPU cluster!

• Retiarii’s Mixed Parallelism:
• Model Parallelism: partitions the super-graph to multiple GPUs

• Data Parallelism: feeds each partition with a different batch of data

43

End-to-End Experiment

Speeding up Weight-Shared Training

• Retiarii’s mixed parallelism greatly reduces exploratory-training time (only 7.45 hours)
• A famous weight-shared NAS: SPOS [1]

• 8.58x speed-up over Data Parallel training w/ SyncBN on 8 V100 GPUs

• Almost the same validation accuracy

44

8.58x

[1] Guo Z, Zhang X, Mu H, Heng W, Liu Z, Wei Y, Sun J. Single path one-shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420. 2019 Mar 31.

End-to-End Experiment

Speeding up Weight-Shared Training

Conclusion

• Retiarii is a new DNN framework designed for exploratory-training

• Retiarii provides new interfaces for DNN model developers to
design & explore new models efficiently

• The simple but powerful Mutator abstraction
• Expressiveness

• Reusability of exploration strategies

• Enabling cross-model optimization

45https://github.com/microsoft/nni

https://github.com/microsoft/nni

Thanks! Q&A

No framework Deep learning framework Exploratory-Training framework

Programming with
libraries

Making programming a DNN
model easier and faster

Making DNN model exploring
easier and faster

Retiarii on NNI

46

https://github.com/microsoft/nni

https://github.com/microsoft/nni/tree/retiarii_artifact

https://github.com/microsoft/nni
https://github.com/microsoft/nni/tree/retiarii_artifact

