A large scale analysis of hundreds of in-memory cache clusters at Twitter

Juncheng Yang,Yao Yue,Rashmi VinayakCarnegie Mellon UniversityTwitterCarnegie Mellon University

Background

In-memory caching is ubiquitous in the modern web services

To reduce latency, increase throughput, reduce backend load

How are in-memory caches used? Do existing assumptions still hold?

Cache use cases

Write-heavy workloads

Object size distribution and evolution

Time-to-live (TTL) and working set

In-memory caches at Twitter

- Single tenant, single layer
 - Container-based deployment
- Large scale deployment
 - 100s cache clusters
 - 1s billion QPS
 - 100s TB DRAM
 - 100,000s CPU cores

Trace collection and open source

- Week-long unsampled traces from one instance of each Twemcache cluster
 - 700 billion requests, 80 TB in size
 - Focus on 54 representative clusters
- Traces are open source
 - <u>https://github.com/twitter/cache-trace</u>
 - <u>https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20</u>

Cache use cases

- Caching for storage
 - Most common and use most resources
- Caching for computation
 - Increasingly popular
 - Machine learning, stream processing
- Transient data with no backing store
 - Rate limiters
 - Negative caches

Write-heavy workloads

35% of clusters are write-heavy (more than 30% writes)

Implication for future research:

- Optimization needed for write-heavy workloads
 - Challenges: scalability, tail latency

Object size

Object sizes are small

- 24% cluster mean object size < 100 bytes
- Median 230 bytes

Metadata size is large

- Memcached uses 56 bytes per-obj metadata
- Research systems often add more metadata
- -> Reduce effective cache size

Implication for future research:

• Minimizing object metadata to increase effective cache size

Object size

Value/key size ratio can be small

- 15% cluster value size <= key size
- 50% cluster value size <= 5 x key size

Small value/key size ratio

- Name spaces are part of keys
 - o Ns1:ns2:obj or obj/ns1/ns2

Implication for future research:

• A robust and lightweight key compression algorithm can increase effective cache size

Size distribution can be static

Most of the time, it is not static The workload below shows a diurnal patterns

Size distribution over time

Sudden changes are not rare

Implication for future research:

- Size distribution changes pose challenges to memory management
- Innovations needed on better memory management techniques

Time-to-live (TTL)

- How long an object can be used for serving requests
- Set during object writes
- Expired objects cannot be served

TTL use cases and usages

• Bounding inconsistency

- Cache updates are best-effort
- Periodic refresh
 - Caches for computation store computation based on dynamic features

Implicit deletion

- Rate limiter
- GDPR compliant

TTLs are usually short

Short TTLs lead to bounded working set sizes

There is no need for a huge cache size if expired objects can be removed in time.

Implication for future research:

- Efficient proactive expiration techniques are more important than evictions
- Innovation needed on efficient TTL expiration

Production statistics

- Small miss ratio and small variations
- Request spikes are not always caused by hot keys

Object popularity

- Mostly Zipfian with large parameter alpha
- Small deviations

Eviction algorithms

- Highly workload dependent
- Four types of results
- FIFO achieves similar miss ratios as LRU

Summary

- Key observations and implications
 - Non-trivial fraction of write-heavy workloads
 - Small objects -> expensive metadata
 - Dynamic object size distribution
 - Short TTLs -> proactive expiration > eviction
- Traces open sourced for the community

Traces are available at <u>https://github.com/twitter/cache-trace</u> <u>https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20</u>

Contact: juncheny@cs.cmu.edu