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KVS: key pillar for distributed systems

Important building block for
¢): Databases, GraphStore

¢): Web applications
¢): Cloud infrastructures

¢): Serverless platforms
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Traditional KVS uses RPC (Server-centric)
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Traditional KVS uses RPC (Server-centric)
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Server CPU is becoming the bottleneck

|

/

Increasing CPU-NIC gap Server KVS

¢): NIC’s speed is growing faster !

Relative speedupll!
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[1] Credits: StRoM: Smart Remote Memory @ Eurosys'20
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Opportunity: one-sided RDMA (Client-direct)

NIC directly reads/writes memory Server KVS
©): Offload index traversal to NIC

¢): Totally bypass server CPU

Get(K1) =V1 Key-values

11



Opportunity: one-sided RDMA (Client-direct)

NIC directly reads/writes memory Server KVS
©):- Offload index traversal to NIC B*ree

¢): Totally bypass server CPU

Key-values

||
r )

CPU

o J

12



1] RTT: roundtrip time

Challenge: limited NIC abstraction

NIC only has simple abstractions Server KVS

¢): e.g., memory read/write

Works well for simple index structure
¢): e.g. HashTable, O(1) network RTTI1!

Inferior for complex index structure

¢): e.g., B*Tree, O(log(n))!2] network RTT

| RNIC I
A

2] n:the scale of the KVS
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Challenge: limited NIC abstraction

Lookup uses multiple RTTs

e.g., ~/ fora 100M KVS




Existing systems adopt caching
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Existing systems adopt caching

Client :
Cache Tree at clients
¢): FARM@SOSP’'15, SIGMOD’19
Cell@ATC'16
/ Cache hash table

¢): DIrTM@SOSP’15
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Existing systems adopt caching

Client

l Cache Tree at clients

¢): FARM@SOSP’'15, SIGMOD’19
Cell@ATC'16

Cache hash table
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High cache miss cost for caching tree

Tree node size can be much larger than the KV
¢): eg., 1K vs. 8B

Recursive invalidation under insertions

hroughput(Mregs/sec) (YCSB-D uniform)
A 30

| 25
20
15 |
10 <
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More layer cached "0 10 20 3 40 0 ® 710

Time (s) 20

¢): When cache more tree layers




Trade-off of existing KVS

Server-centric KVS
¢): High CPU utilizations
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Trade-off of existing KVS

Server-centric KVS
9: High CPU utilizations server CPU

Can we achieve all these properties ?
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Trade-off of existing KVS

Server-centric KVS
¢): High CPU utilizations

Client-direct KVS

¢): Poor performance

Client-direct KVS + cache
¢): High memory usage
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Overview of XSTORE

Hybrid architecture [1]

¢): Sever-centric updates

¢): Because one-sided has simple semantic

O(1) Client-direct Get,Scan

Complex op,

e.q., Tree splits

Requests _ Learned Cache ’

Key-values

- @ Get,Scan I
= Insert, Update .

| 1] Similar to existing RDMA-based KVS, e.g., FaARM@SOSP'15, Cell@ATC'16
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Our approach: Learned cache

Using ML as the cache structure for tree-based index

Motivated by the learned index!]

¢): Replace index traversal with calculation

¢): The ML model can be orders of magnitude smaller than tree

Key —@—f » Address

Machine Learning (ML) models

[1] The case for the learned index @ SIGMOD’18
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Client-direct Get() using learned cache
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Learned model with
small memory

Server KVS
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Client-direct Get() using learned cache
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Client-direct Get() using learned cache
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Client-direct Get() using learned cache
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Client-direct Get() using learned cache
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Client-direct Get() using learned cache

Client Server KVS
Bt Tree
Key-values
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Benefits of the learned cache

Q Client | #1 1 RTT for lookup

(Ka\/4) /\

w #2 Small memory footprint | | Key-values

i y
fl IW
lcpul | RNIC | Network -
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Challenges of learned cache

Client \ Server KVS .

Dynamic insertions/deletions ?
Learned model assumes a sorted array

Key-values
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Server-side data structure for dynamic workloads




XSTORE stores KVs in B*Tree leaf nodes

Dynamic insertions/deletions ?
Learned index assumes a sorted array

Key-values




Models cannot learn dynamic B*Tree address

Can only learn when the addresses are sorted

Not the case for dynamic B+Tree

Insert (K1.5V1.5)

A

I | . |

0x00 Ox10 OxZ20

¥ v ] v
EslEsEEaE
0x20
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Solution: another layer of indirection

Observation: leaf nodes are logically sorted

¢): Assign logical addresses to leaf nodes ° Logical addresses
ML: key — I()gical / \
®)- Translation table (TT): logical — physical ? l|_]l ._? l|_T ._?Ll|

Ox00 Ox10 Ox20

Translation Table

0x00 Ox10 Ox20
O 1 %




Client-side learned cache & TT




Client-direct Get() using model & TT
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Client-direct Get() using model & TT
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Client-direct Get() using model & TT
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Client-direct Get() using model & TT
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Client-direct Get() using model & TT
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Model retraining

Model is retrained at server in background threads

¢)* Small cost & extra CPU usage at the server

/\

Server KVS

XSTORE uses a two-layer RMI to organize models!1!

¢): Fine-grained model retraining

| 1] Recursive Model Inference, following “The case for the learned index @ SIGMOD'18’
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Stale model handling
Background update causes stale learned models

But stale learned models & TT could correctly find most keys

¢): If the key is not moved, a stale Model & TT still maintains correct

Key — Logical — Physical
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Many other design details & optimizations

Server-side operations

Find non-trained keys

Optimizations of speculative execution

Dynamic model expansion
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Evaluation of XSTORE

We answer the following questions:

¢): Comparing to server-centric designs?
¢): Comparing to client-direct designs?

¢): Does XStore provide better trade-off?

Cllent

Cllent EI ‘ Server 2

Client

Server CPU
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O
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Performance

® Client-direct + cache

Client memory
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4 cores
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Performance of XSTORE on YCSB
100M KVs, uniform workloads
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Performance of XSTORE on YCSB
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Performance of XSTORE on YCSB
100M KVs, uniform workloads
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Performance of XSTORE on YCSB
100M KVs, uniform workloads
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The XCache in details

For a 100M KVs YCSB dataset
¢): 500K Linear regression as models, each 14B AR

Key

LR | .. LR LR

¢): ~ 8us to retrain each model —

#models = 500K

¢): ~ 8s to train the entire cache



The XCache In detalils

For a 100M KVs YCSB dataset
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The XCache In detalils

For a 100M KVs YCSB dataset
¢): 500K Linear regression as models, each 14B AR

LR | ... LR LR

¢): ~ 8us to retrain each model —

#models = 500K

¢): ~ 8s to¥ain the entire cache

Quick retrain under dynamic workload




Sensitive to the dataset o Workloads

. . Linear e.g., YCSB,TPC-C
Different dataset has different accuracy . .4iinear .o YCSB

Open street map e.g., OpenStreetMap

¢): May affect the performance

Throughput drop due to increased error for complex dataset

Peak throughput (100M dataset) Average latency (LLs)
10
SE+07
3
6E+Q7/ 4
AE+07 ¢ > Linear 4 > Linear
O Noised linear O Noised linear
2E+0Q7 <> Open street Map 2 <> Open street Map
OE+0Q0 O
500K 1M oM 10M 20OM 500K 1M oM 10M 20OM

Number of model used Number of model used 59



L earned cache vs. Tree-based cache

XStore provides better memory-performance trade-off
¢): YCSB-C uniform workload

Peak throughput (YCSB-C uniform)

100 > XStore
20 O Tree-index
—6—

%
%
60

IR S ™ 150MB vs. 600MB
ol 40M/s w 16B cache D__‘_
Q y ——— AT —_
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Current limitations and future work
XSTORE currently only supports fixed-length keys

¢): Our paper describes our plan to support variable-length keys

Focus on simple models (e.g., LR)

¢): Efficient upon retraining under dynamic workloads
¢): May results in huge error for complex data distribution

¢): Trade-off: retraining speed vs. accuracy vs. memory

Orthogonal to the design of XSTORE
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Conclusion

XSTORE provides a new design for RDMA-enabled KVS
¢): First adopts the learned models for one-sided RDMA READ

XSTORE provides better trade-offs:

¢)- Server-side CPU vs. Client-side memory vs. Performance

Please check XSTORE@
¢): https://ipads.se.sjtu.edu.cn/projects/xstore
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