
Xingda Wei, Rong Chen, Haibo Chen

STORE

Fast RDMA-based Ordered Key-Value Store
using Remote Learned Cache

KVS: key pillar for distributed systems

2

Important building block for

 Databases, GraphStore

 Web applications

 Cloud infrastructures

 Serverless platforms

KVS: key pillar for distributed systems

3

B+Tree

Key-values

Server KVS

KVS: key pillar for distributed systems

4

CPURNICRNICCPU Network

B+Tree

Key-values

Client Server KVS

Traditional KVS uses RPC (Server-centric)

5

B+Tree

(K1,V1)

CPURNICRNICCPU Network

Key-values

Get(K1)

Client Server KVS

Traditional KVS uses RPC (Server-centric)

6

Key-values

B+Tree

(K1,V1)

CPURNICRNICCPU Network

Get(K1)

Client Server KVS

Traditional KVS uses RPC (Server-centric)

7

Key-values

B+Tree

CPUCPU Network

Client Server KVS

RNICRNIC

(K1,V1)Get(K1)

= V1

Traditional KVS uses RPC (Server-centric)

8

(K1,V1)

CPUCPU Network

Key-values

B+Tree

Get(K1)

Client Server KVS

RNICRNIC

= V1

Traditional KVS uses RPC (Server-centric)

9

(K1,V1)

CPUCPU Network

Key-values

B+Tree

Get(K1)

Client Server KVS

RNICRNIC

RPC leverages server CPU for processing

CPU

Server CPU is becoming the bottleneck

CPURNIC

Key-values

B+Tree
Increasing CPU-NIC gap

 NIC’s speed is growing faster !

Server KVS

CPU

10

0.1

1

10

100

1000

10000

100000

1970 1980 1990 2000 2010 2020 2030

CPU frequency
NIC bandwidth

Rela@ve speedup[1]

Year

Compute-
bandwidth
Gap

[1] Credits: StRoM: Smart Remote Memory @ Eurosys’20

Huge CPU cost with random reads

Opportunity: one-sided RDMA (Client-direct)
NIC directly reads/writes memory

 Offload index traversal to NIC

 Totally bypass server CPU

11

= V1

CPUCPU Network

Key-values

B+Tree

Get(K1)

Server KVS

RNIC RNIC

(K1,V1)

Opportunity: one-sided RDMA (Client-direct)
NIC directly reads/writes memory

 Offload index traversal to NIC

 Totally bypass server CPU

12

= V1

CPURNICCPU Network

Get(K1)

Server KVS

Key-values

B+Tree

RNIC

(K1,V1)

Challenge: limited NIC abstraction
NIC only has simple abstractions

 e.g., memory read/write

Works well for simple index structure

 e.g. HashTable, O(1) network RTT[1]

Inferior for complex index structure

e.g., B+Tree, O(log(n))[2] network RTT

13

RNIC

Key-values

B+Tree
Server KVS

RNICRNIC

[2] n:the scale of the KVS

[1] RTT: roundtrip @me

14

RNICCPU Network

Client Server KVS

Key-values

B+Tree

Get(K1)

RNIC

(K1,V1)

Challenge: limited NIC abstraction

15

(K0,V0)

RNICCPU Network

Client Server KVS

Key-values

B+Tree1

Get(K1) NIC can only read one level use one RTT!

RNIC

Challenge: limited NIC abstraction

16

(K0,V0)

RNICRNICCPU Network

Client Server KVS

Key-values

B+Tree

Lookup uses multiple RTTs

e.g., ~7 for a 100M KVS

= V1Get(K1)

1

2

Challenge: limited NIC abstraction

。
。
。

17

RNICRNICCPU Network

Client Server KVS

Key-values

B+Tree

Get(K1)

Existing systems adopt caching

18

RNICRNICCPU Network

Client Server KVS

Key-values

B+Tree

1 Get() uses 4 roundtrips

 Inefficient !

Cache Tree at clients

FaRM@SOSP’15, SIGMOD’19
Cell@ATC’16

Cache hash table

DrTM@SOSP’15
Get(K1)

Existing systems adopt caching

Existing systems adopt caching

19

RNICRNICCPU Network

Client Server KVS

Key-values

B+Tree

1 Get() uses 4 roundtrips

 Inefficient !
Avoid using NIC for index
traversal

Get(K0)

Cache Tree at clients

FaRM@SOSP’15, SIGMOD’19
Cell@ATC’16

Cache hash table

DrTM@SOSP’15
B+Tree index has huge client memory cost!

High cache miss cost for caching tree
Tree node size can be much larger than the KV

e.g., 1K vs. 8B

Recursive invalidation under insertions

When cache more tree layers

20

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80
Time (s)

Throughput(Mreqs/sec) (YCSB-D uniform)

More layer cached

Trade-off of existing KVS
Server-centric KVS

 High CPU utilizations

21

Server CPU

Performance

Server-centric

Trade-off of existing KVS
Server-centric KVS

 High CPU utilizations

Client-direct KVS

 Poor performance

22

Performance

Server-centric

Client-direct

Server CPU

Trade-off of existing KVS
Server-centric KVS

 High CPU utilizations

Client-direct KVS

 Poor performance

Client-direct KVS + cache

 High memory usage

23

Server CPU

Performance

Client memory

Server-centric

Client-direct + cache

Client-direct

Server-centric KVS

 High CPU utilizations

Client-direct KVS

 Poor performance

Client-direct KVS + cache

 High memory usage

Client-direct

Trade-off of existing KVS

24

Performance

Server-centric

Client-direct + cache

Can we achieve all these properhes ?

Client memory

Server CPU

Server-centric KVS

 High CPU utilizations

Client-direct KVS

 Poor performance

Client-direct KVS + cache

 High memory usage

Trade-off of existing KVS

25

Performance

Server-centric

Client-direct + cache

STORE

Client memory

Client-direct

Server CPU

RNIC

Overview of XSTORE
Hybrid architecture [1]

Sever-centric updates

Because one-sided has simple semantic

O(1) Client-direct Get,Scan

26

CPURNICCPU

[1] Similar to exis@ng RDMA-based KVS, e.g., FaRM@SOSP’15, Cell@ATC’16

Get,Scan
Insert, Update

B+Tree

Key-values
Requests

Complex op,
e.g., Tree splits

Learned Cache

Our approach: Learned cache
Using ML as the cache structure for tree-based index

Motivated by the learned index[1]

Replace index traversal with calculation

The ML model can be orders of magnitude smaller than tree

27
[1] The case for the learned index @ SIGMOD’18

Machine Learning (ML) models

Key Address

Client-direct Get() using learned cache

28

RNICRNICCPU Network

Client Server KVS

Key-values

B+Tree

Get(K1)

Learned
models

Learn a mapping of
Address = B+Tree(key)

Client-direct Get() using learned cache

29

RNICRNICCPU Network

Client Server KVS

Key-values

B+Tree

Get(K1)

Learned
models

Learned model with
small memory

Client-direct Get() using learned cache

30

RNICCPU Network

Client Server KVS

Key-values

B+Tree

RNIC

K1

K1 is guaranteed to be in [0,1]

Learned model assumes a sorted array

(K1,V1)Get(K1) [0,1]

0 2 31

Client-direct Get() using learned cache

31

RNICCPU Network

Client Server KVS

Key-values

B+Tree

RNIC

(K1,V1)Get(K1) [0,1]

0 2 31

Client-direct Get() using learned cache

32

(K1,V1)

CPU Network

Client Server KVS
B+Tree

RNIC

Get(K1)

Key-values
[0,1]

RNIC

0 2 31

Client-direct Get() using learned cache

33

(K1,V1)

CPU Network

Client Server KVS
B+Tree

Get(K1)

Key-values

RNIC

1

(K0,0), (K1,1)

RNIC

0 2 31

Client-direct Get() using learned cache

34

(K1,V1)

CPU Network

Client Server KVS
B+Tree

Get(K1)
(K0,0), (K1,1)

1

Addr of K1 = 1 Key-values

RNICRNIC

0 2 31

Client-direct Get() using learned cache

35

(K1,V1)

CPU Network

Client Server KVS
B+Tree

Get(K1)

1

Key-values

RNICRNIC

= V1

0 2 31

Benefits of the learned cache

36

(K1,V1)

CPU Network

Client Server KVS
B+Tree

Get(K1)

0 1 2 3

1

Key-values

RNICRNIC

= V1

#1 1 RTT for lookup

#2 Small memory footprint

Challenges of learned cache

37

(K1,V1)

CPU Network

Client Server KVS
B+Tree

Get(K1)

Key-values

RNICRNIC

= V1

Dynamic inserWons/deleWons ?
Learned model assumes a sorted array

0 2 31

Server-side data structure for dynamic workloads

Client-side learned cache & TT

Performance evaluation of XSTORE

Outline of the remaining content

38

XSTORE stores KVs in B+Tree leaf nodes

39

RNICCPU Network

Client Server KVS

Key-values

B+Tree

RNIC

1 2 3

(K1,V1)Get(K1)

Dynamic inserWons/deleWons ?
Learned index assumes a sorted array

Key-values0 2 31

40

0x00 0x10 0x20

Can only learn when the addresses are sorted

Not the case for dynamic B+Tree

Models cannot learn dynamic B+Tree address

Insert (K1.5,V1.5)

0x00 0x10 0x200x300x00 0x10 0x200x30Unsorted!

41

Observation: leaf nodes are logically sorted

 Assign logical addresses to leaf nodes

 ML: key logical

 Translation table (TT): logical physical

Solution: another layer of indirection

0x00 0x10 0x20

0 1 2

x Logical addresses

0x00 0x10 0x20

TranslaWon Table

0 1 2

Outline of the remaining content
Server-side data structure for dynamic workloads

Client-side learned cache & TT

Performance evaluation of XSTORE

42

(K1,V1)

0x00 0x10 0x20

Client-direct Get() using model & TT

43

RNICCPU Network

Client Server KVS
B+Tree

RNIC

TT

Model & TT forms the cache

Client-direct Get() using model & TT

44

RNICNetwork

Client Server KVS
B+Tree

RNIC

(K1,V1)TTK1Get(K1)

[0,1]

CPU

0x00 0x10 0x20

(K1,V1)

0x00 0x10 0x20

Client-direct Get() using model & TT

45

RNICNetwork

Client Server KVS
B+Tree

RNIC

TTK1Get(K1)

CPU

Logical addresses

[0,1]

(K1,V1)

0x00 0x10 0x20

Client-direct Get() using model & TT

46

RNICNetwork

Client Server KVS
B+Tree

RNIC

TTK1Get(K1)

CPU

[0,1]

[0x00,0x10]

[0x00,0x10]

(K1,V1)

0x00 0x10 0x20

Client-direct Get() using model & TT

47

Network

Client Server KVS
B+Tree

RNIC

TTK1Get(K1)

CPU

[0,1]

RNIC

Shll one roundtrip to look up the address of K1

Model retraining
Model is retrained at server in background threads

 Small cost & extra CPU usage at the server

48

Server KVS Inserhon Retraining Update

On demand

Client cache

XSTORE uses a two-layer RMI to organize models[1]

 Fine-grained model retraining

[1] Recursive Model Inference, following “The case for the learned index @ SIGMOD’18”

LR

NN

LR

Key

Background update causes stale learned models

But stale learned models & TT could correctly find most keys

 If the key is not moved, a stale Model & TT still maintains correct

 Key Logical Physical

49

Stale model handling

Many other design details & optimizations
Server-side operations

Find non-trained keys

Optimizations of speculative execution

Dynamic model expansion

Fault tolerance of XSTORE

Scale-out XSTORE

50

We answer the following questions:

 Comparing to server-centric designs?

 Comparing to client-direct designs?

 Does XStore provide better trade-off?

Evaluation of XSTORE

51

Performance

Server-centric

Client-direct

Client-direct + cache
Client memory

Server CPU

CPU RNIC

24 cores 2 * ConnectX-4 Server

Client

Client

Client

RDMA

Performance of XSTORE on YCSB
100M KVs, uniform workloads

52

Workload A B C D E
R(S)/(U/I) 50:50 90:10 100:0 95:5 95:5

[*] Read, Scan, Update, Insert

Th
pt

 (M
re

qs
/s

ec
)

0
20
40
60
80

100

A B C D E

DrTM+Tree@Eurosys'16 Cell@ATC'16 XSTORE
EMassTree@NSDI'19 RDMA-Memached

Performance of XSTORE on YCSB
100M KVs, uniform workloads

53

Workload A B C D E
R(S)/(U/I) 50:50 90:10 100:0 95:5 95:5

[*] Read, Scan, Update, Insert

Th
pt

 (M
re

qs
/s

ec
)

0
20
40
60
80

100

A B C D E

DrTM+Tree@Eurosys'16 Cell@ATC'16 XSTORE
EMassTree@NSDI'19 RDMA-Memached

40M reqs/s/NIC

Performance of XSTORE on YCSB
100M KVs, uniform workloads

54

Workload A B C D E
R(S)/(U/I) 50:50 90:10 100:0 95:5 95:5

[*] Read, Scan, Update, Insert

Th
pt

 (M
re

qs
/s

ec
)

0
20
40
60
80

100

A B C D E

DrTM+Tree@Eurosys'16 Cell@ATC'16 XSTORE
EMassTree@NSDI'19 RDMA-Memached

Boqlenecked by server CPU.

Performance of XSTORE on YCSB
100M KVs, uniform workloads

55

Workload A B C D E
R(S)/(U/I) 50:50 90:10 100:0 95:5 95:5

[*] Read, Scan, Update, Insert

Th
pt

 (M
re

qs
/s

ec
)

0
20
40
60
80

100

A B C D E

DrTM+Tree@Eurosys'16 Cell@ATC'16 XSTORE
EMassTree@NSDI'19 RDMA-Memached

Traversing B+Tree with one-sided RDMA is costly!

The XCache in details
For a 100M KVs YCSB dataset

 500K Linear regression as models, each 14B

 ~ 8μs to retrain each model

 ~ 8s to train the entire cache

56

LR

LR

LR

Key

LR…

#models = 500K

The XCache in details
For a 100M KVs YCSB dataset

 500K Linear regression as models, each 14B

 ~ 8μs to retrain each model

 ~ 8s to train the entire cache

57

LR

LR

LR

Key

LR…

#models = 500K

Small model to fit the dataset

The XCache in details
For a 100M KVs YCSB dataset

 500K Linear regression as models, each 14B

 ~ 8μs to retrain each model

 ~ 8s to train the entire cache

58

LR

LR

LR

Key

LR…

#models = 500K

Quick retrain under dynamic workload

Sensitive to the dataset
Different dataset has different accuracy

 May affect the performance

Throughput drop due to increased error for complex dataset

59

Name Workloads
Linear e.g., YCSB,TPC-C

Noised Linear e.g., YCSB
Open street map e.g., OpenStreetMap

0E+00

2E+07

4E+07

6E+07

8E+07

Linear
Noised linear
Open street Map

Number of model used

Peak throughput (100M dataset)

500K 1M 5M 10M 20M
0

2

4

6

8

10

Linear
Noised linear
Open street Map

Number of model used

Average latency (μs)

500K 1M 5M 10M 20M

Learned cache vs. Tree-based cache
XStore provides better memory-performance trade-off

 YCSB-C uniform workload

60

0

20

40

60

80

100

0 25 50 75 100 125 150

XStore
Tree-index

Client memory usage

Peak throughput (YCSB-C uniform)

150MB vs. 600MB 40M/s w 16B cache

Current limitations and future work
XSTORE currently only supports fixed-length keys

 Our paper describes our plan to support variable-length keys

Focus on simple models (e.g., LR)

 Efficient upon retraining under dynamic workloads

 May results in huge error for complex data distribution

 Trade-off: retraining speed vs. accuracy vs. memory

 Orthogonal to the design of XSTORE
61

Conclusion
XSTORE provides a new design for RDMA-enabled KVS

 First adopts the learned models for one-sided RDMA READ

XSTORE provides better trade-offs:

 Server-side CPU vs. Client-side memory vs. Performance

Please check XSTORE@
https://ipads.se.sjtu.edu.cn/projects/xstore

Thanks & QA

