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KVS: key pillar for distributed systems
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Important building block for 

 Databases, GraphStore 

 Web applications 

 Cloud infrastructures 

 Serverless platforms
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Traditional KVS uses RPC (Server-centric)
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Traditional KVS uses RPC (Server-centric)
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Server CPU is becoming the bottleneck
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 NIC’s speed is growing faster ! 
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Huge CPU cost with random reads 



Opportunity: one-sided RDMA (Client-direct)
NIC directly reads/writes memory 

 Offload index traversal to NIC 

 Totally bypass server CPU
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Challenge: limited NIC abstraction
NIC only has simple abstractions 

 e.g., memory read/write 

Works well for simple index structure 

 e.g. HashTable, O(1) network RTT[1] 

Inferior for complex index structure 

e.g., B+Tree, O(log(n))[2] network RTT
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[2] n:the scale of the KVS

[1] RTT: roundtrip @me
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Existing systems adopt caching
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Cache hash table 

DrTM@SOSP’15 
B+Tree index has huge client memory cost! 



High cache miss cost for caching tree
Tree node size can be much larger than the KV  

e.g., 1K vs. 8B 

Recursive invalidation under insertions 

When cache more tree layers
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Trade-off of existing KVS
Server-centric KVS 

 High CPU utilizations 
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Trade-off of existing KVS
Server-centric KVS 

 High CPU utilizations  

Client-direct KVS 

 Poor performance 

Client-direct KVS + cache 

 High memory usage
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Server-centric KVS 

 High CPU utilizations  

Client-direct KVS 

 Poor performance 

Client-direct KVS + cache 

 High memory usage
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Trade-off of existing KVS
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Server-centric KVS 
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 Poor performance 

Client-direct KVS + cache 

 High memory usage

Trade-off of existing KVS
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RNIC

Overview of XSTORE
Hybrid architecture [1] 

Sever-centric updates 

Because one-sided has simple semantic 

O(1) Client-direct Get,Scan
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[1] Similar to exis@ng RDMA-based KVS, e.g., FaRM@SOSP’15, Cell@ATC’16

Get,Scan
Insert, Update

B+Tree

Key-values
Requests

Complex op, 
e.g., Tree splits

Learned Cache



Our approach: Learned cache
Using ML as the cache structure for tree-based index 

Motivated by the learned index[1] 

Replace index traversal with calculation 

The ML model can be orders of magnitude smaller than tree

27
[1] The case for the learned index @ SIGMOD’18

Machine Learning (ML) models

Key Address



Client-direct Get() using learned cache
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Client-direct Get() using learned cache
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Client-direct Get() using learned cache
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Client-direct Get() using learned cache
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Client-direct Get() using learned cache
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Client-direct Get() using learned cache
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Client-direct Get() using learned cache
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Client-direct Get() using learned cache
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Benefits of the learned cache
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Challenges of learned cache
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Server-side data structure for dynamic workloads 

Client-side learned cache & TT 

Performance evaluation of XSTORE

Outline of the remaining content
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XSTORE stores KVs in B+Tree leaf nodes

39

RNICCPU Network

Client Server KVS

Key-values

B+Tree

RNIC

1 2 3

(K1,V1)Get(K1)

Dynamic inserWons/deleWons ? 
Learned index assumes a sorted array 

Key-values0 2 31



40

0x00 0x10 0x20

Can only learn when the addresses are sorted 

Not the case for dynamic B+Tree

Models cannot learn dynamic B+Tree address

Insert (K1.5,V1.5)

0x00 0x10 0x200x300x00 0x10 0x200x30Unsorted! 
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Observation: leaf nodes are logically sorted 

 Assign logical addresses to leaf nodes 

 ML: key      logical 

 Translation table (TT): logical      physical

Solution: another layer of indirection

0x00 0x10 0x20

0 1 2

x Logical addresses

0x00 0x10 0x20

TranslaWon Table

0 1 2



Outline of the remaining content
Server-side data structure for dynamic workloads 

Client-side learned cache & TT 

Performance evaluation of XSTORE
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(K1,V1)

0x00 0x10 0x20

Client-direct Get() using model & TT
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Client-direct Get() using model & TT
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(K1,V1)
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Client-direct Get() using model & TT
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(K1,V1)
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Client-direct Get() using model & TT
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[0x00,0x10]

(K1,V1)
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Client-direct Get() using model & TT
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Model retraining
Model is retrained at server in background threads 

 Small cost & extra CPU usage at the server
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Server KVS Inserhon Retraining Update 

On demand 

Client cache 

XSTORE uses a two-layer RMI to organize models[1] 

 Fine-grained model retraining

[1] Recursive Model Inference, following “The case for the learned index @ SIGMOD’18”
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Background update causes stale learned models 

But stale learned models & TT could correctly find most keys 

 If the key is not moved, a stale Model & TT still maintains correct 

      Key       Logical       Physical

49

Stale model handling



Many other design details & optimizations
Server-side operations 

Find non-trained keys 

Optimizations of speculative execution 

Dynamic model expansion 

Fault tolerance of XSTORE 

Scale-out XSTORE 
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We answer the following questions: 

 Comparing to server-centric designs?  

 Comparing to client-direct designs? 

 Does XStore provide better trade-off? 

Evaluation of XSTORE 
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Performance of XSTORE on YCSB
100M KVs, uniform workloads
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Performance of XSTORE on YCSB
100M KVs, uniform workloads
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40M reqs/s/NIC



Performance of XSTORE on YCSB
100M KVs, uniform workloads
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Performance of XSTORE on YCSB
100M KVs, uniform workloads
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Traversing B+Tree with one-sided RDMA is costly!



The XCache in details
For a 100M KVs YCSB dataset 

 500K Linear regression as models, each 14B 

 ~ 8μs to retrain each model 

 ~ 8s to train the entire cache
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For a 100M KVs YCSB dataset 

 500K Linear regression as models, each 14B 
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The XCache in details
For a 100M KVs YCSB dataset 

 500K Linear regression as models, each 14B 

 ~ 8μs to retrain each model 

 ~ 8s to train the entire cache
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Sensitive to the dataset
Different dataset has different accuracy 

 May affect the performance 

Throughput drop due to increased error for complex dataset
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Learned cache vs. Tree-based cache
XStore provides better memory-performance trade-off 

 YCSB-C uniform workload
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Current limitations and future work
XSTORE currently only supports fixed-length keys 

 Our paper describes our plan to support variable-length keys 

Focus on simple models (e.g., LR) 

 Efficient upon retraining under dynamic workloads 

 May results in huge error for complex data distribution 

 Trade-off: retraining speed vs. accuracy vs. memory 

 Orthogonal to the design of XSTORE
61



Conclusion
XSTORE provides a new design for RDMA-enabled KVS 

 First adopts the learned models for one-sided RDMA READ 

XSTORE provides better trade-offs: 

 Server-side CPU vs. Client-side memory vs. Performance 

Please check XSTORE@ 
https://ipads.se.sjtu.edu.cn/projects/xstore

Thanks & QA


