Fast RDMA-based Ordered Key-Value Store
using Remote Learned Cache

Xingda Wei, Rong Chen, Haibo Chen

1 1PADS XSTORE
§ 1V ohsmauren svstems

KVS: key pillar for distributed systems

Important building block for
¢): Databases, GraphStore

¢): Web applications
¢): Cloud infrastructures

¢): Serverless platforms

KVS: key pillar for distributed systems

Server KVS

Bt Tree

| | Key-values

KVS: key pillar for distributed systems

Client

|
|cpu| RNIC I
T

Server KVS

Bt Tree

Key-values

||
r)

CPU

- v
|

Traditional KVS uses RPC (Server-centric)

Client

| |
|cpu| RNIC I
T

Server KVS

Bt Tree

Key-values

||
r)

CPU

- v
|

Traditional KVS uses RPC (Server-centric)

Client

| |
|cpu| RNIC I
T

Server KVS

Bt Tree

Key-values

||
r)

CPU

- v
|

Traditional KVS uses RPC (Server-centric)

Client Server KVS

Bt Tree

Key-values

||
r)

CPU

- v
|

Traditional KVS uses RPC (Server-centric)

Client Server KVS TN

Traditional KVS uses RPC (Server-centric)

Client Server KVS .

cPul | RNIC F----
T

Server CPU is becoming the bottleneck

|

/

Increasing CPU-NIC gap Server KVS

¢): NIC’s speed is growing faster !

Relative speedupll!
100000 > CPU frequency
[0 NICbandwidth | R . cammte.

10000
Huge CPU cost with random reads

100
0.1

_1970 1980 1990 2000 2010 2020 2030

Year
[1] Credits: StRoM: Smart Remote Memory @ Eurosys'20

/

Opportunity: one-sided RDMA (Client-direct)

NIC directly reads/writes memory Server KVS
©): Offload index traversal to NIC

¢): Totally bypass server CPU

Get(K1) =V1 Key-values

11

Opportunity: one-sided RDMA (Client-direct)

NIC directly reads/writes memory Server KVS
©):- Offload index traversal to NIC B*ree

¢): Totally bypass server CPU

Key-values

||
r)

CPU

o J

12

1] RTT: roundtrip time

Challenge: limited NIC abstraction

NIC only has simple abstractions Server KVS

¢): e.g., memory read/write

Works well for simple index structure
¢): e.g. HashTable, O(1) network RTTI1!

Inferior for complex index structure

¢): e.g., B*Tree, O(log(n))!2] network RTT

| RNIC I
A

2] n:the scale of the KVS

Challenge: limited NIC abstraction

Client

QA
/[

Get

I I
|

CPU
T

Server KVS

Bt Tree

/

Key-values

14

Challenge: limited NIC abstraction

Server KVS

B+ Tree

'Key-values

15

Challenge: limited NIC abstraction

Lookup uses multiple RTTs

e.g., ~/ fora 100M KVS

Existing systems adopt caching

Client

=

/

Get(K1)

|

| |
r 2

Server KVS

CPU
LI IJ

Bt Tree

Key-values

17

Existing systems adopt caching

Client :
Cache Tree at clients
¢): FARM@SOSP’'15, SIGMOD’19
Cell@ATC'16
/ Cache hash table

¢): DIrTM@SOSP’15

Get

| |
:CPU_ | RNIC [
T

Existing systems adopt caching

Client

l Cache Tree at clients

¢): FARM@SOSP’'15, SIGMOD’19
Cell@ATC'16

Cache hash table

19

High cache miss cost for caching tree

Tree node size can be much larger than the KV
¢): eg., 1K vs. 8B

Recursive invalidation under insertions

hroughput(Mregs/sec) (YCSB-D uniform)
A 30

| 25
20
15 |
10 <

-

More layer cached "0 10 20 3 40 0 ® 710

Time (s) 20

¢): When cache more tree layers

Trade-off of existing KVS

Server-centric KVS
¢): High CPU utilizations

Server CPU

Server-centric
@

Performance

21

Trade-off of existing KVS

Server-centric KVS

¢): High CPU utilizations

Client-direct KVS

¢): Poor performance

Server CPU

Server-centric

Client-direct

Performance

22

Trade-off of existing KVS

Server-centric KVS
¢): High CPU utilizations

Client-direct KVS

¢): Poor performance

Client-direct KVS + cache
¢): High memory usage

Server CPU

Server-centric
@

Client-direct
Performance

Client-direct + cache

Client memory

23

Trade-off of existing KVS

Server-centric KVS
9: High CPU utilizations server CPU

Can we achieve all these properties ?

—

Performance

Client-direct KVS

¢): Poor performance

e —

Client-dire

Client-direct KVS + cache

"tlient-direct + cache

¢): High memory usage
Client memory

24

Trade-off of existing KVS

Server-centric KVS
¢): High CPU utilizations

Client-direct KVS

¢): Poor performance

Client-direct KVS + cache
¢): High memory usage

Server CPU

Server-centric
@

Client-direct
Performance

XSTORE

® Client-direct + cache

Client memory

25

Overview of XSTORE

Hybrid architecture [1]

¢): Sever-centric updates

¢): Because one-sided has simple semantic

O(1) Client-direct Get,Scan

Complex op,

e.q., Tree splits

Requests _ Learned Cache ’

Key-values

- @ Get,Scan I
= Insert, Update .

| 1] Similar to existing RDMA-based KVS, e.g., FaARM@SOSP'15, Cell@ATC'16

26

Our approach: Learned cache

Using ML as the cache structure for tree-based index

Motivated by the learned index!]

¢): Replace index traversal with calculation

¢): The ML model can be orders of magnitude smaller than tree

Key —@—f » Address

Machine Learning (ML) models

[1] The case for the learned index @ SIGMOD’18

27

Client-direct Get() using learned cache

Client

Server KVS

/\

Learn a mapping of
Address = B*Tree(key)

B+ Tree
Learned

models

Key-values

28

Learned model with
small memory

Server KVS

it

Client-direct Get() using learned cache

B+ Tree
Learned

models

Key-values

29

Client-direct Get() using learned cache

Client Server KVS

/\ B+ Tree

Client-direct Get() using learned cache

=

/

Get(K1)

|

||
CPU

_J
|

Client

i

Server KVS

Bt Tree

Key-values

31

Client-direct Get() using learned cache

Client

Server KVS

Bt Tree

Key-values

32

Client-direct Get() using learned cache

Client

CPU RNIC

Server KVS

Bt Tree

Key-values

33

Client-direct Get() using learned cache

Client

Server KVS

Q
A

(Ko,0), (K1,1)

Get(K1))

||
CPU
LI IJ

Bt Tree

Key-values

34

Client-direct Get() using learned cache

Client Server KVS
Bt Tree
Key-values

35

Benefits of the learned cache

Q Client | #1 1 RTT for lookup

(Ka\/4) /\

w #2 Small memory footprint | | Key-values

i y
fl IW
lcpul | RNIC | Network -

B+ Tree

36

Challenges of learned cache

Client \ Server KVS .

Dynamic insertions/deletions ?
Learned model assumes a sorted array

Key-values

37

Server-side data structure for dynamic workloads

XSTORE stores KVs in B*Tree leaf nodes

Dynamic insertions/deletions ?
Learned index assumes a sorted array

Key-values

Models cannot learn dynamic B*Tree address

Can only learn when the addresses are sorted

Not the case for dynamic B+Tree

Insert (K1.5V1.5)

A

I | . |

0x00 Ox10 OxZ20

¥ v] v
EslEsEEaE
0x20

40

Solution: another layer of indirection

Observation: leaf nodes are logically sorted

¢): Assign logical addresses to leaf nodes ° Logical addresses
ML: key — I()gical / \
®)- Translation table (TT): logical — physical ? l|_]l ._? l|_T ._?Ll|

Ox00 Ox10 Ox20

Translation Table

0x00 Ox10 Ox20
O 1 %

Client-side learned cache & TT

Client-direct Get() using model & TT

=

SICHINN Model & TT forms the cache ,

||
CPU
LI IJ

Client-direct Get() using model & TT

Client Server KVS
B+Tree
/ /@*” ”
Get(K1) Ki (K1V4) l_T Ll
[/ = SHESH
| 0x00 Ox10 OxZ20

|cpu[| RNIC I-}}}}f_ Network i RNIC
LI IJ

Client-direct Get() using model & TT

Client Server KVS

Q Loglcal addresses

Get(K1) K1 TT (K1 Vo)

S~ . ,
i/ Ox00 Ox1

B+ Tree

|

T

Ox20

Client-direct Get() using model & TT

Client Server KVS
B+ Tree
/ /" @—m s
Get Kl 1 (Kl,\/l) rT t_l
\ —
{ / [OXOO Ox10] . | | |
Ox00 Ox10 Ox20
I

|cpu[| RNIC I-}}}}f_ Network i RNIC
LI IJ

Client-direct Get() using model & TT

Client Server KVS

L
/ /@"“ﬁ”

B+ Tree

eeiar] ot oneroundtrip to look up the address of K1

[[0x00,0x10]

| Ox00
|cpu| Q RNIC F----- Network —----

Ox10

Ox20

47

Model retraining

Model is retrained at server in background threads

¢)* Small cost & extra CPU usage at the server

/\

Server KVS

XSTORE uses a two-layer RMI to organize models!1!

¢): Fine-grained model retraining

| 1] Recursive Model Inference, following “The case for the learned index @ SIGMOD'18’

3

Key

NN

LR

Stale model handling
Background update causes stale learned models

But stale learned models & TT could correctly find most keys

¢): If the key is not moved, a stale Model & TT still maintains correct

Key — Logical — Physical

49

Many other design details & optimizations

Server-side operations

Find non-trained keys

Optimizations of speculative execution

Dynamic model expansion

54
Xs 12 a .\'il"ilur |
l.'
10g fifa. § I
iley 0g w,
recoye. Or fites WUpdae. -
very (a lig ates, i
C .8, se Storgee o '0Ser
d((c‘“,e‘_) , """L‘r'g- r‘,gc or
S are pa Slocap ;. Pergj
“Cll‘dl . 18 Ag
Cadg

* Hopk ups,

Fault tolerance of XSTORE

Scale-out XSTORE

Evaluation of XSTORE

We answer the following questions:

¢): Comparing to server-centric designs?
¢): Comparing to client-direct designs?

¢): Does XStore provide better trade-off?

Cllent

Cllent EI ‘ Server 2

Client

Server CPU

Server-centric
O

Client-direct
Performance

® Client-direct + cache

Client memory

CPU

4 cores

RNIC
2 * ConnectX-4

o1

Performance of XSTORE on YCSB
100M KVs, uniform workloads

. DrTM+Tree@Eurosys'16 Cell@ATC'16 B XSTORE

— 100 " EMassTree@NSDI'19 " RDMA-Memached

QO

& 80

S 60

8

= 40

S 20 I - - |

= OI ._I .-I .-l .- m B

A B C D E

Workload A B C D E
R(S)/(U/I) 50:50 90:10 100:0 95:5 95:5

"] Read, Scan, Update, Insert

52

Performance of XSTORE on YCSB
100M KVs, uniform workloads

| DrTM+Tree@Eurosys'16 ~ Cell@ATC'16
— 100 [EMassTree@NSDI'19 1
g S0 40M reqs/s/NIC
Vg
S
O 60
= 40
g
—

20 m
-

Workload A B C D E
R(S)/(U/I) 50:50 90:10 100:0 95:5 95:5

"] Read, Scan, Update, Insert

I._ .II- .II- l II- m He
A B C D E

53

Performance of XSTORE on YCSB
100M KVs, uniform workloads

rTM+Tree@Eurosys'16

Cell@ATC'16 B XSTORE
RDMA-Memached

S 100 asslree@NSDI'19
Q
2L
S Bottlenecked by server CPU.
S 40
s 2 |||_|||.ﬂ|.||...-
=)
A B C D E

Workload A B C D E
R(S)/(U/I) 50:50 90:10 100:0 95:5 95:5
"] Read, Scan, Update, Insert

o4

Performance of XSTORE on YCSB
100M KVs, uniform workloads

. DrTM+Tree@Eurosys'16 Cell@ATC'16
— 100 || EMassTree@NSDI'19 " RDMA-Memached

B XSTORE

Workload A B C D
R(S)/(U/I) 50:50 90:10 100:0 95:5

"] Read, Scan, Update, Insert

E
95:5

95

The XCache in details

For a 100M KVs YCSB dataset
¢): 500K Linear regression as models, each 14B AR

Key

LR | .. LR LR

¢): ~ 8us to retrain each model —

#models = 500K

¢): ~ 8s to train the entire cache

The XCache In detalils

For a 100M KVs YCSB dataset
¢): 500K Linear regression as models, each 14B

¢): ~ 8us thyetrain each model

¢): ~ 8sto train entire cache

Small model to fit the dataset

/

LR | ...

LR

LR

#models = 500K

S/

The XCache In detalils

For a 100M KVs YCSB dataset
¢): 500K Linear regression as models, each 14B AR

LR | ... LR LR

¢): ~ 8us to retrain each model —

#models = 500K

¢): ~ 8s to¥ain the entire cache

Quick retrain under dynamic workload

Sensitive to the dataset o Workloads

. . Linear e.g., YCSB,TPC-C
Different dataset has different accuracy . .4iinear .o YCSB

Open street map e.g., OpenStreetMap

¢): May affect the performance

Throughput drop due to increased error for complex dataset

Peak throughput (100M dataset) Average latency (LLs)
10
SE+07
3
6E+Q7/ 4
AE+07 ¢ > Linear 4 > Linear
O Noised linear O Noised linear
2E+0Q7 <> Open street Map 2 <> Open street Map
OE+0Q0 O
500K 1M oM 10M 20OM 500K 1M oM 10M 20OM

Number of model used Number of model used 59

L earned cache vs. Tree-based cache

XStore provides better memory-performance trade-off
¢): YCSB-C uniform workload

Peak throughput (YCSB-C uniform)

100 > XStore
20 O Tree-index
—6—

%
%
60

IR S ™ 150MB vs. 600MB
ol 40M/s w 16B cache D__‘_
Q y ——— AT —_
a - Cliengomemoréfsusage P s ‘

Current limitations and future work
XSTORE currently only supports fixed-length keys

¢): Our paper describes our plan to support variable-length keys

Focus on simple models (e.g., LR)

¢): Efficient upon retraining under dynamic workloads
¢): May results in huge error for complex data distribution

¢): Trade-off: retraining speed vs. accuracy vs. memory

Orthogonal to the design of XSTORE

61

Conclusion

XSTORE provides a new design for RDMA-enabled KVS
¢): First adopts the learned models for one-sided RDMA READ

XSTORE provides better trade-offs:

¢)- Server-side CPU vs. Client-side memory vs. Performance

Please check XSTORE@
¢): https://ipads.se.sjtu.edu.cn/projects/xstore

: i H r Gl ’Wi)

zﬁf s BN ~ 74’.{ '
1 & £ = 1 3 ! "l] \
; g : 1 ;

