
Consistency across Read-Optimized
Online Stores at Facebook

Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han,
Dmitri Petrov, Jim Carrig, John Hugg, and Nathan Bronson
Software Engineer, Facebook Boston

The challenges of providing
Read-Your-Writes (RYW) consistency

 for the social graph

Our solution: FlightTracker

Lessons learned and
production experiences

Q&A

Read-optimized data store for the social graph

LB
[Usenix ATC’13] TAO: Facebook’s Distributed Data Store for the Social Graph

FRIEND

HAS_COMMENT

A
U

TH
O

R

A
U

TH
O

R

● Eventual consistency as a baseline

● Applications can query latest data
if necessary

● Reading fresher data is OK
i.e., per-item at-or-after / lower bound semantics

● End users get Read-Your-Writes

A
syn

c R
ep

lication

As described in the TAO paper
[Usenix ATC’13]

Write

A
syn

c R
ep

lication

CLUSTER

STICKINESS

WRITE-

THROUGH

As described in the TAO paper
[Usenix ATC’13]

REGION

STICKINESS

WEB-TAO

DECOUPLED

FAILOVER /

DISASTER

RE-ROUTING

REGION

STICKINESS

WEB-TAO

DECOUPLED

FAILOVER /

DISASTER

RE-ROUTING

 Async Replication

 Async Replication

+ CLIENT

LIBRARY

Extend uniform semantics
to global indexes and new
Database types

Dynamic communication paths

ENABLERETAIN

Read efficiency and hot spot
tolerance

High availability, low latency,
and loose-coupling
(async-replication)

User-centric RYW consistency

Identify missing writes

● Data-store agnostic
● Reusable and extensible
● Write metadata only

Encapsulated
set of writes Ensure visibility: read

results reflect missing
writes

● Data-store specific strategies
● Ticket attached on each query

maps user_ids to
recent write metadata

TICKET-

INCLUSIVE

READS

AMORTIZED

● Write set: metadata that identifies a set of writes

■ Joinable, i.e., set union

● Encapsulated

■ Most code paths treat Tickets as opaque tokens

■ Serialized and compressed on the wire

● Named “Ticket” (vs. timestamp / version) to reduce potential preconception

about its semantics

Ticket {
 RepForDatabaseA databaseA;
 RepForDatabaseB databaseB;
 ...
 Timestamp globalTs;
}

// Example database-specific representation
RepForDatabaseA {
 map<WriteKey, pair<Version, Timestamp>> perKeyMap;
 map<ShardId, pair<TxnId, Timestamp>> perShardMap;
}

{
 databaseA: {
 “node123”:
 {v: 2, ts: 1603237337483},
 “edge456”:
 {v: 42, ts: 1603237338021}
 }
}

Fix data store first

e.g., consistency miss
for caches

Fix stale results

e.g., client read repair
for indexes

Reevaluate query

e.g., on a diff replica;
at a later time

Data-store specific implementation strategies

TICKET-

INCLUSIVE

READ

CONSISTENCY

MISS

TICKET-

INCLUSIVE

READ

 Async Replication

RESHARD,

TRANSFORM,

& FILTER

TICKET-

INCLUSIVE

READ

● The default session is an end user, which is sticky to a region.

● Select applications need write visibility guarantees other than user-centric

RYW.

● Flexible definition of “session”

■ E.g., async job, particular TAO object (see paper)

■ Reads and writes can belong to multiple sessions.

● Customizable FlightTracker quorum config

■ E.g., write to FlightTracker in all regions, read locally

● Systems at the product infrastructure layer may handle Tickets explicitly

■ Especially when we can piggyback on existing communication

■ Still hidden from applications

publish

personalize

 Async Replication
writes reads

RACE WITH

TAO

REPLICATION

publish

personalize

 Async Replication
writes

publish

personalize

COLLECT

WRITES

TICKET-

INCLUSIVE

READ

Ticket internals are
encapsulated from applications.

Ticket-inclusive reads only
targets per-item at-or-after /

lower-bound semantics.

Can safely include additional write
metadata while honoring RYW.

e.g., FlightTracker server or client are free to join
Tickets whenever new writes happen.

Can safely include
additional write metadata

while honoring RYW.
e.g., joining Tickets

Ticket compaction
e.g., can replace write metadata
with a single global timestamp

for writes older than 60s

Can safely include
additional write metadata

while honoring RYW.
e.g., joining Tickets

Single-round protocol
for FlightTracker

Only need to provide durability
but NOT atomicity

Identifying logged-in
user_id was more difficult

than we expected.

Constraints on FlightTracker
design are not based on the

average case, but the extreme
ones, such as hot spots or

disaster scenarios.

The ability to opt into
alternative write visibility

guarantees late in product
dev cycle enabled us to

make RYW a good default.

The applications that cause the
most operational trouble often

need RYW the least.

The decomposition in the
FlightTracker design allowed
us to incrementally provide
RYW for 2 caches, 3 global

indexes, and 2 database
technologies.

Ticket-inclusive reads
established a contract that
revealed latent bugs in our

existing eventual consistency
protocols.

FlightTracker
write availability

compared with
underlying data stores

CPU/RAM overhead
on existing data stores and

web servers

FlightTracker read availability
measured from the client

FlightTracker
write QPS

FlightTracker
read QPS

Social graph
queries per day

In production

Xiao Shi
xshi@fb.com

Scott Pruett Kevin Doherty Jinyu Han

Dmitri Petrov Jim Carrig John Hugg Nathan Bronson

FlightTracker: Consistency across Read-Optimized Online Stores at Facebook

