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The challenges of providing
Read-Your-Writes (RYW) consistency
for the social graph

Our solution: FlightTracker
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TAO

Read-optimized data store for the social graph

User devices Stateless web servers Graph store
Mobile app / browser Application logic TAO
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[Usenix ATC'13] TAO: Facebook’s Distributed Data Store for the Social Graph




Social graph consistency model

e End users get Read-Your-Writes

- e Eventual consistency as a baseline

e Applications can query latest data
If necessary

e Reading fresher data is OK
.e., per-item at-or-after / lower bound semantics




TAO 2013: two-layer write-through cache

Region 1 Region 2

—8

Web L1 cache

server L2 cache Primary DB
Write

-
—— =S
- _

Browser Web L1 cache L2 cache

|
(K. ‘Hdea ks

server Region 3
L2 cache Replica DB
Web L1 cache
server

As described in the TAO paper
[Usenix ATC'13]



Region 1 Region 2

TAO 2013: fixed communication patterns for RYW
s
StER s

@
\“Ess WEle L1 cache

\C\( server L2 cache Primary DB

=4
I
- - |
————————— —>
ﬁ - . .

.& s -
Bob

c\V

({C ‘Hdea ke

Web L1 cache L2 cache
server _
Wt
S S gO\)C‘ =
= = 1\ =
— - L2 cache Replica DB
Web L1 cache

server

As described in the TAO paper
[Usenix ATC'13]



Evolution since 2013



Scalability limit: routing must be more dynamic




Scalability limit: routing must be more dynamic
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Scalability limit: routing must be more dynamic

Region 1 Region 2
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Scalability limit: routing must be more dynamic
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Scalability: add global iIndexes and other data stores
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Scalability: add global iIndexes and other data stores
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Rethinking social graph consistency

RETAIN

—|— User-centric RYW consistency

Read efficiency and hot spot
tolerance

_I_ High availability, low latency,
and loose-coupling
(async-replication)

ENABLE

—|— Dynamic communication paths

-xtend uniform semantics
—+ to global indexes and new
Database types




Our solution: FlightTracker



Our solution: decompose the consistency

problem

Consistency: what writes are visible to a read?

FlightTracker
ldentify missing writes

e Data-store agnostic
e Reusable and extensible
e Write metadata only
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Ticket
Encapsulated
set of writes
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Ticket-inclusive reads

Ensure visibility: read
results reflect missing
Writes

e Data-store specific strategies
e Ticket attached on each query
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RYW: User writes span web requests

FlightTracker
maps user_ids to
recent write metadata










Ticket

e \\/rite set: metadata that identifies a set of writes

m Joinable, l.e., set union

e Encapsulated
m Most code paths treat Tickets as opague tokens
m Serialized and compressed on the wire
e Named “Ticket” (vs. timmestamp / version) to reduce potential preconception

about Its semantics



Ticket representation




Ticket-inclusive read

Data-store specific mplementation strategies

| 2

Fix data store first Fix stale results

e.g., consistency miss e.g., client read repair
for caches for Indexes

3

Reevaluate query

e.g., on a diff replica;
at a later time



Ticket-inclusive read for caches




Challenges for global indexes




Beyond RYW



Beyond RYW: additional FlightTracker session types

e The default session Is an end user, which is sticky to a region.

e Select applications need write visibility guarantees other than user-centric
RYW.

o [lexible definition of “session”

m E.g, async job, particular TAO object (see paper)

m Reads and writes can belong to multiple sessions.

e Customizable FlightTracker guorum config

m E.g, write to FlightTracker in all regions, read locally
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Beyond RYW: external Ticket handling

e Systems at the product infrastructure layer may handle Tickets explicitly
m Especially when we can piggyback on existing communication

m Still hidden from applications



Example: pub-sub notification system




Pub-sub notification system: the problem

Region 1 Region 2

writes

-—> ation
-. publish The subscriber delivers
A or
some
triggers a publish event.
Region 3

Subscribers



External Ticket handling

“Read-the-Publisher’'s-Writes”




| essons learned
&
production experiences
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Ticket Internals are Ticket-inclusive reads only
encapsulated from applications. _I_ targets per-item at-or-after/
lower-bound semantics.

Can safely include additional write
metadata while honoring RYW.

e.qg., FlightTracker server or client are free to join
Tickets whenever new writes happen.



Can safely include
additional write metadata
while honoring RYW.

e.g., joining Tickets

Ticket compaction

e.g., can replace write metadata
with a single global timestamp
for writes older than 60s



Can safely include
additional write metadata
while honoring RYW.

e.g., Joining

Ickets

Single-round protocol

for FlightTracker

Only need to provide durability
but NOT atomicity




Lessons learned (Cont’d)
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ldentifying logged-in Constraints on FlightTracker
user_id was more difficult design are not based on the
than we expected. average case, but the extreme

ones, such as hot spots or
disaster scenarios.

The ability to opt into
alternative write visibility
guarantees late in product
dev cycle enabled us to
make RYW a good default.



Lessons learned (Cont’d)

Ticket-inclusive reads The applications that cause the The decomposition in the
established a contract that most operational trouble often FlightTracker design allowed
revealed latent bugs in our need RYW the least. us to incrementally provide

existing eventual consistency RYW for 2 caches, 3 global
protocols. Indexes, and 2 database

technologies.



It's real and 1t works

99.9999%

FlightTracker read avallability

measured from the client

10),¢

FlightTracker

write avallability

compared with
underlying data stores

<2%

CPU/RAM overhead

on existing data stores and
web servers



It's real and 1t works

4Yrs 20M  100M 10"

N production FlightTracker FlightTracker Soclal graph
write QPS read QPS queries per day




Thank you!
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