Blockene: A High Throughput Blockchain over Mobile Devices

Sambhav Satija, Apurv Mehra, Sudheesh Singanamalla, Karan Grover *Muthian Sivathanu*, Nishanth Chandran, Divya Gupta, Satya Lokam

Microsoft Research India

Trustworthy Transaction Management

- E.g. Financial transactions, property transfers/ownership, etc.
- Traditional model: Use a common, trusted intermediary
 - e.g. a Bank (money), Govt. Registry (land ownership), etc.
 - Store current state of the world; Validate transactions for integrity
- Sometimes, trusted intermediary is not viable or is cumbersome
 - e.g. Philanthropic donations/NGOs, public spending, intl. bank transfers
- Blockchains enable decentralized transaction management
 - Multiple parties store state; run a consensus protocol for validation
 - Robust even if some parties (e.g. < 1/3rd) are malicious

Blockchain architectures

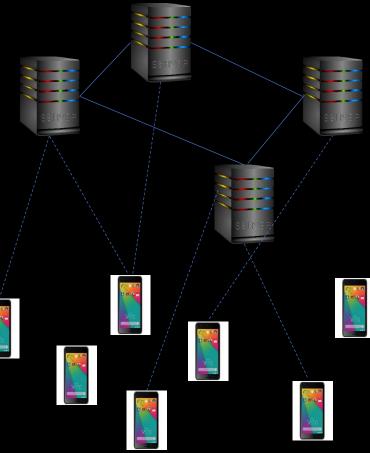
Blockchain Architecture	Applications	# Participants	Performance (Trans/sec)	
Public Blockchains (e.g. Bitcoin)	Cryptocurrency	Millions	4 - 20	usage
Consortium Blockchains (e.g. Hyperledger)	Business processes (e.g. inter-bank payments)	Tens	1000s	r / resource
AlgoRand [2017]	Cryptocurrency	Millions	1000s	Heavy
Blockene	Citizen-powered audits (e.g. philanthropy)	Millions	~1000	Lightweight

Societal scale applications

- Philanthropy
 - Donations to NGOs most common mode: ~USD 10B+/year in India alone
 - <u>Problem</u>: Very little transparency/accountability => leakage of funds
 - Blockchain-based platform for tracking flow of funds
 - Donor knows exactly what happened to their donation (up to end beneficiaries)
- Public Spending/e-governance (e.g. distribution of subsidies)
 - E.g. when intermediaries may be corrupt

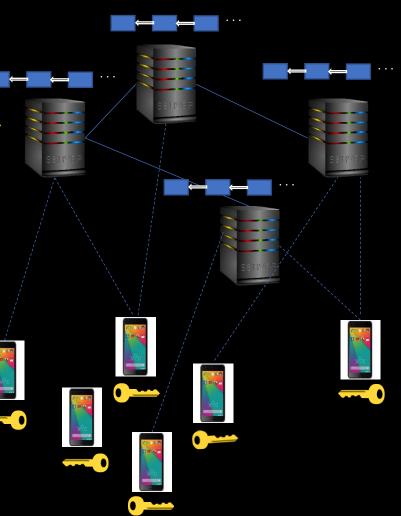
Scale & Lightweight Cost: Why important?

• Scale leads to Security

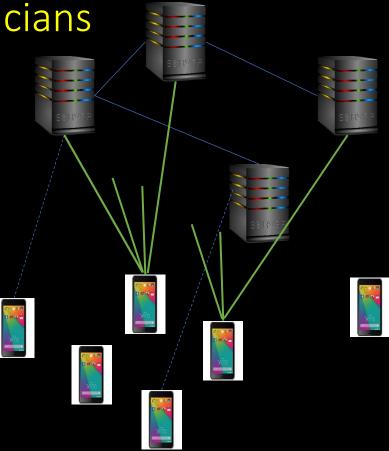

- Central assumption in blockchains: 2/3rd members are honest
- Consortium => concentration of power w/ small number of members
 - Can collude/be vulnerable to corruption
- Shared control of millions of citizens => more collusion-proof
- Lightweight *leads to* Scale
 - Current blockchains need powerful servers: Barrier for adoption
 - For wide altruistic adoption, participation should be almost free

Blockene properties

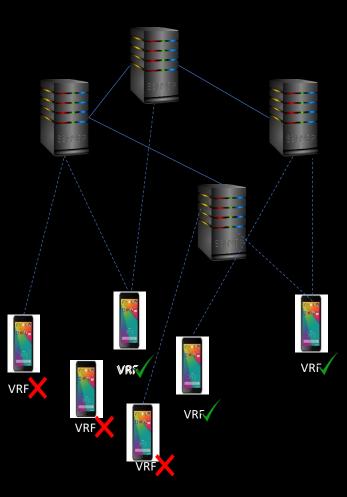
- High performance: 1045 transactions/sec
 - Good enough for real-world applications
- Large scale: Millions of participant members
- Ultra-Lightweight: Participants only need a smartphone
 - ~60MB/day data usage (700x cheaper than alternatives; cellular-data-friendly)
 - MBs of storage (1000x lower than alternatives)
 - ~3% battery cost per day (imperceptible to user)


Design of Blockene

- A "perfect" democracy
- Politicians: "Powerful" & few (100s)
 - Not trusted by citizens
 - Up to 80% politicians can be corrupt
 - <u>Only execute</u> citizens' decisions
- Citizens: "Poor" & many (100s of mil)
 - Majority of citizens are honest (> 70%)
 - Collusion is hard because of large numbers
 - <u>Take all decisions</u> by majority
 - e.g. whether a transaction is valid,
 - which transactions go into a block, etc.


Division of responsibilities

- Only trust data signed by "majority" of citizens
- Storage of blockchain
 - Normally, every member stores entire blockchain
 - Blockene: Only politicians store blockchain
- Communication
 - Normally, members "gossip" blocks & txns
 - Data intensive; can't happen w/ mobile phones
 - Blockene: Citizens gossip *through* politicians
 - Citizens read/write to politicians; politicians gossip
- Compute
 - Validation / Ordering performed by citizens


Dealing with corrupt politicians

- Politicians cannot fabricate messages (need sign by majority citizens)
- Staleness Attack
 - Replay old signed messages. E.g. when citizen asks for "latest" block
- Forget attack (e.g. drop new block)
- Fragment world view attack
- Several new mechanisms
 - Verifiable replicated reads
 - Fan-out writes to "safe sample"
 - Prioritized gossip
- Need only 20% honest politicians

Dealing with "poor" citizens

- Each new block blessed by a random subcommittee of citizens
 - 2000 random citizens out of millions
- Sub-committee is cryptographically chosen
 - Each round/block has a different sub-committee
 - Citizen can prove it's chosen for a block/round
 - Similar principle to AlgoRand, but more batteryefficient
 - Checking for committee every round kills battery
- Validate w/o storing copy of blockchain
 - Read only state that's needed. Challenging when 80% of "data sources" are malicious

Scalable by design

- Increasing number of citizens by 10x (e.g. 1 million to 10 million)
 - Per-citizen load <u>reduces</u> by 10x
 - Per-politician load nearly constant: Size of citizen sub-committee is fixed
- Increasing # politicians
 - Per-citizen load remains constant ("safe sample" size is fixed)
 - Per-politician load nearly constant because of prioritized gossip

Dealing with "greedy" citizens

- What prevents users from spinning up 100s of nodes?
 - Sybil Attacks; Get disproportionate voting power
- Tap into Android trusted hardware (TEE) used for fingerprint auth
 De-dup Blockene identity w/ public key of TEE (i.e. one identity per phone)
- Can be combined with anonymized real-world identity (e.g. Aadhaar)
 - Blockchain identity tied to a derivative of Aadhaar

Implementation

- Citizen node: Android app
 - Careful threading model to overlap compute + networking
- Politician node: C++ server
 - State-machine based architecture
- ~23k lines of code
- Evaluated at scale on Azure across multiple WAN regions
 - Android VM on Azure for citizens
 - Cloud server on Azure for politicians

Evaluation: Transaction throughput

5.0M Fully honest (0/0) 500 4.5M Malicious (50/10) Malicious (80/25) 4.0M 400 3.5M 3.0M 300 2.5M 2.0M 200 1.5M 1.0M 100 500.0k 0.0 2500 4500 0 500 1000 1500 3000 3500 4000 Time (sec)

committed (cumulative)

Num transactions

200 politician nodes on Azure (8core, 40 MB/s network b/w)

2000 Citizen nodes on Android VMs in Azure (1-core, 1 MB/s b/w)

Spread across 2 Azure regions (WestUS, EastUS)

(cumulative

committed

data

ИB

Committee size independent of # citizens => <u>Performance expected</u> to be same at larger scale

~1045 transactions per sec

Global State Read/Write

Global State stored in Merkle tree at politicians Citizens need to verify during reads and writes

Naïve: Download challenge-paths for each key (too expensive) Optimized: Offload compute to politicians; spot-checks with guarantees

Upload	Download	Compute	
(MB)	(MB)	(s)	
0	56.16	93.5	242 - //-
0	0	93.5	242 s/bloc
0.55	1.6	1.0	$12 \mathrm{s/block}$
0.01	3	5.88	12 s/block
	(MB) 0 0.55	(MB) (MB) 0 56.16 0 0 0.55 1.6	$\begin{array}{c ccccc} 1 & & & & 1 \\ \hline (MB) & (MB) & & (s) \\ \hline 0 & 56.16 & 93.5 \\ \hline 0 & 0 & 93.5 \\ \hline 0.55 & 1.6 & 1.0 \\ \end{array}$

block

Summary

- First known attempt to make blockchains work off mobile phones
 - Resource usage <u>2 to 3 orders of magnitude</u> lower
- Novel systems design: Citizens + Politicians
- Bridging security vs. performance tradeoff
 - Delegate heavy work to powerful, but untrusted nodes
 - Verify and perform correctness-sensitive work at lightweight nodes
 - Proofs for safety, liveness, and fairness
- Citizens participate in blockchain at negligible cost
- Edge-powered state-management platform