
Fabian Ruffy, Tao Wang, and Anirudh Sivaraman

p4gauntlet.github.io

Finding Bugs in Compilers for
Programmable Packet Processing

https://p4gauntlet.github.io/

Accelerators for machine learning

Google TPU, Intel VPU

Cloud FPGAs for specialized tasks

Microsoft Catapult, Amazon F1

DPUs (Fungible, NVIDIA Bluefield)

Programmable Networks

SmartNICs (Xilinx, Pensando)

Programmable switch chips
(Barefoot, Cisco, Broadcom)

2

Computation is Moving to Accelerators

Force the developer to “think” in accelerator-
specific abstractions

Examples
TensorFlow HLO for deep learning models

P4/NPL for packet processing

3

Accelerators and Domain-Specific Languages

DSLs are often constrained and

not Turing-complete!
Consequence

DSLs typically require a custom compiler, which…

4

Compilers and Domain-Specific Languages

enforces the restrictions for the target accelerator

translates high-level spec into device-specific instructions

applies domain-specific optimizations

Increase in accelerators leads to…
…more domain-specific compilers to deal with

Compilers for these DSLs may have bugs

5

What about Bugs in These Compilers?

Newer → not as well-tested as general-purpose GCC, LLVM, ICC

Often compile for mission-critical paths → high impact of faults

applies domain-specific optimizations

How do we make sure that these compilers are reliable?

6

Exploit Constrained DSLs!

If we constrain our DSL just right we can…

…efficiently apply formal methods

…revive old techniques from compiler and testing literature

Observation: DSLs only need to express restricted functionality

We describe

7

Our Work: Bug-finding Techniques for P416

How to find bugs in compilers for the P416 DSL

How we revive old compiler techniques to find bugs

Gauntlet, our tool suite that finds bugs in P416 compilers

Designing a DSL well can lead to effective analysis tools

8

Broader Takeaways

Limiting undefined behavior eases code generation

Restrictions make expressive semantics possible

P416 is such a semantics-friendly DSL. This helped us...

…identify more than 90 bugs within eight months of testing

…apply translation validation at scale without false positives

…integrate translation validation into the CI pipeline of P4C

DSL for network data planes

9

What is P4?

Specifies how an incoming packet header is parsed

Allows the implementation of custom network protocols

Open and standardized

P4

Compiler
P4 Program

Packets

Target-

specific

binary

Programmable

network device

Back ends

10

P4: Current Landscape

Intel (Barefoot) Tofino, Cisco Silicone One, Xilinx Alveo

Users

Google, Broadcom, Nokia, Orange…

P416 DSL has a reference compiler: P4C

Has status similar to LLVM/GCC; represents the P4 spec

P4C transforms input → streamlines and optimizes code

11

Compiler Context: P4C

Mid End

IR IR

Target-specific

compiler passes

Target-independent compiler passes

(25+ distinct transformations)

Same IR
IR with target-specific

extensions

P416

Parser

IR

Front End Back End
P4

Program

IR: Intermediate Representation

12

Stages of Testing a Compiler

Sequence of ASCII characters

Sequence of words, etc.

Syntactically correct program

Type-correct program

Statically conforming program

Dynamically conforming program

In
c
re

a
s
e

d
 P

re
c
is

io
n

Differential testing for software., McKeeman, William M., Digital Technical Journal, 1998

1

2

3

4

5

6

LEVEL

…large input sizes?

…an invalid token?

… a missing bracket?

…adding int to a struct?

… a variable that is not defined?

…transforming expressions?

INPUT CLASS CAN THE COMPILER HANDLE…

https://www.cs.swarthmore.edu/~bylvisa1/cs97/f13/Papers/DifferentialTestingForSoftware.pdf

Crash Bug

13

Two Types of Bugs

“Obvious” bug

Program that causes the compiler to exit abnormally

All bugs up to level 5

Miscompilation or “Semantic Bug”

No error raised, but behavior of program is altered

Typically caused by misbehaving compiler passes

Level 6

Sequence of ASCII characters

Sequence of words, white space…

Syntactically correct program

Type-correct program

Statically conforming program

Dynamically conforming program

Random programs

14

How to Crash the Compiler?

We target level 5

Generate random programs that are valid

Sequence of ASCII characters

Sequence of words, white space…

Syntactically correct program

Type-correct program

Dynamically conforming program

Statically conforming program

Identify programs that cause a non-zero exit code

Could also be a program that is incorrectly rejected

Bonus: Use the generated programs to find semantic bugs

15

Handling Semantic Bugs in the Compiler

Equal?

Proof

Assistant

Correct?

Differential

Testing?

Translation

Validation?

Equal?

Compiler

Verification?

Historically limited because of undecidability

16

Why does Translation Validation Work for P4?

But, P4’s properties are a great fit for formal methods

Language core not Turing-complete

Program-structure provides well-defined state

Input/output and state known at program start

We can compare entire programs!

Cannot use translation validation for closed-source compilers

17

Model-Based Testing

No access to the IR

Output binary obfuscated and semantics unknown

Idea: Reuse program semantics to infer input and output

Requires end-to-end test framework

Input/output pairs are computed based on program branches

Pass_1.p4Pass_1.p4Pass_1.p4test1.stf

Toolbox of testing software

18

The Gauntlet Framework for P4

Random code generator

Interpreter that converts P416 to Z3

Translation validation and testing pipeline

Three concrete techniques for finding bugs

1. Random code generation to find crash bugs

2. Translation validation to identify semantic bugs

3. Bonus: Model-based testing for closed-source compilers

19

Normalized Z3 Semantics: Example

struct Hdr {bit<48> mac_dst;
bit<48> mac_src;
bit<16> eth_type; }

control in(inout Hdr hdr, in bit<8> flag) {
main {

if (flag = 0) {
hdr.eth_type = Ox800; // IPv4

} else {
hdr.eth_type = 0x86DD; // IPv6

}
}

}

Symbolic input: hdr, flag
Symbolic output: hdr_out

hdr_out = if (flag == 0):
Hdr(hdr.mac_dst,

hdr.mac_src,
0x800)

otherwise:
Hdr(hdr.mac_dst,

hdr.mac_src,
0x86DD)

P4 Program Semantic Representation

Program generator modelled after Csmith

20

Generating a Random Program for P4C

But does not avoid undefined behavior → Simpler

“Grow” the AST by picking from legal P416 expressions

Code generation is guided by P416 specification

A correctly rejected, generated program is a bug in our tool

Small fragments of the language sufficient to detect bugs

Branching is limited → Performance not a concern

21

The Gauntlet Validation Workflow

Pass_1.

p4

Pass_1.

p4

Pass_1.

p4
pass1.p4

OK

Equal?

Check

Z3 equality

Convert P4

to Z3

Emit P4 code

after each pass

Produce random

P4 program

Generator P4C Gauntlet Gauntlet

Crash

Bug

Semantic

Bug

Non-zero

exit code

22

Bonus: Model-Based Testing

OK

Equal?

Convert P4

to Z3

Produce random

P4 program

Generator

Compile

Crash

Bug

Semantic

Bug
Non-zero

exit code

Load

into device Record output

Pass_1.p
4

Pass_1.p
4

Pass_1.p
4

test1.stf
Generate tests

and

expected output

Found 96 compiler bugs in 8 months

23

Results

62 compiler crashes (25/62 in the compiler for the Tofino network chip)

Resulted in 6 specification changes

34 semantic bugs (7/34 in the compiler for the Tofino network chip)

Some observations

Crashes were largely caused by an assertion firing

Handling side-effects correctly is difficult

Develop semantics for instruction set architectures

24

Future Work

Extend translation validation to back ends

Ensure correctness during the entire compilation process

Detect other classes of compiler bugs

Identify when an optimization should have been applied

Identify compiler passes negatively affecting performance

Again repurpose techniques from compiler testing literature

A well-designed device DSL can lead to effective analysis tools

25

Summary

With Gauntlet we were able to...

…apply translation validation at scale without false positives

…identify more than 90 bugs within eight months of testing

…integrate translation validation into the CI pipeline of P4C

P4 is a semantics-friendly DSL, which helped us build Gauntlet

Thank you

for listening! Fabian Ruffy (fruffy@nyu.edu)

Tao Wang (tw1921@nyu.edu)

Anirudh Sivaraman (anirudh@cs.nyu.edu)

p4gauntlet.github.io

Contact Project Repository

mailto:fruffy@nyu.edu
mailto:tw1921@nyu.edu
mailto:anirudh@cs.nyu.edu
https://p4gauntlet.github.io/

