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» Applications cannot overcommit memory.

Opening a 20GB file for analysis with pandas
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| am currently trying to open a file with pandas and python for machine learning purposes it would

be ideal for me to have them all in a DataFrame. My RAM is 32 GB. | keep getting memory errors.
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» Expensive solution: overprovision memory for peak usage.




Trending Solution: Far Memory

» Leverage the idle memory of remote servers (with fast network).
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Existing Far-Memory Systems Perform Poorly

» Real-world Data Analytics from Kaggle.
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Why Do Existing Systems Waste Performance?

* Problem: based on OS paging.
— Semantic gap.
— High kernel overheads.



Challenge 1: Semantic Gap

»Page granularity 2 R/W amplification.

Page
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Challenge 1: Semantic Gap

* Page granularity =2 R/W amplification.
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Challenge 2: High Kernel Overheads

* Expensive page faults.

» Busy Polling for in-kernel net I/O = burn CPU cycles.
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AlIFM’s Design Overview

» Key idea: swap memory using a userspace runtime.



AlIFM’s Design Overview

»Key idea: swap memory using a userspace runtime.

1. Semantic gap Remoteable Data structure library
(Amplification, Hard to prefetch)

2. Kernel overheads Userspace runtime
(page faults, busy poll for net 1/0)
3. Impact of Memory Reclamation Pauseless evacuator
(pause app threads)
4. network BW < DRAM BW Remote Agent

24
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2. Userspace Runtime

» Solved challenge: kernel overheads.
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» Solved challenge: impact of memory reclamation.
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3. Pauseless Evacuator

» Solved challenge: performance impact of memory reclamation.
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3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

Remoteable Ptr O
» Data Structure

App User- ] library API
Level Thread O |

Vield T App Seinantlcs Ptr 1
Pauseless
Prefetcher LD
Evacuator

Ptr N

Local Memory

Far Memory

35
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» Solved challenge: impact of memory reclamation.
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4. Remote Agent

»Solved challenge: network BW < DRAM BW.
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4. Remote Agent

»Solved challenge: network BW < DRAM BW.
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Sample Code

std::unordered_map<key t, int> hashtable;
std::array<LargeData> arr;

LargeData foo(std::list<key t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);
}

LargeData ret = arr.at(sum);
return ret;

}
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Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys list) {
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);

}

LargeData ret = arr.at(sum);
return ret;

}

42



Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {
DerefScope scope;
sum += hashtable.at(key, scope);
}
DerefScope scope;
LargeData ret = arr.at(sum, scope);
return ret;

Ensure the accessed objects will
not be moved by the evacuator.
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Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {
DerefScope scope;
sum += hashtable.at(key, scope);

}

DerefScope scope;

LargeData ret = arr.at< true>(sum, scope);
return ret;

Prefetch list data.
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Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {
DerefScope scope;
sum += hashtable.at(key, scope);

}

DerefScope scope;

LargeData ret = arr.at< true>(sum, scope);
return ret;

Prefetch list data.

Cache hot objects.
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Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys_list) {

iInt sum = 0;
for (auto key : keys_list) { Prefetch list data.
DerefScope scope;
sum += hashtable.at(key, scope); Cache hot objects.
}

DerefScope scope;

LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);  Avoid polluting local mem.
return ret;

47



Implementation

» Implemented 6 data structures.
* Array, List, Hashtable, Vector, Stack, and Queue.
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Implementation

* Implemented 6 data structures.
* Array, List, Hashtable, Vector, Stack, and Queue.

* Runtime is built on top of Shenango [NSDI’ 19].

* TCP far-memory backend.
»LoC: 6.5K (runtime) + 5.5K (data structures) + 0.8K (Shenango)
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Evaluation

e Setup: 1 compute server + 1 far memory server, 25 GbE.
* How does AIFM

* ... perform on applications with different compute intensities?
e ...compare to the local-only (ideal) system?
» ... compare to the state-of-the-art paging system, Fastswap [EuroSys’ 20]?



Performance on Different Compute Intensities
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Performance on Different Compute Intensities
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NYC Taxi Analysis (C++ DataFrame)

»DataFrame: data analytical framework, similar to Python Pandas.
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NYC Taxi Analysis (C++ DataFrame)

* DataFrame: data analytical framework, similar to Python Pandas.

* Real Kaggle workload
* Working set size = 31 GB.
* Modify 1.4K LoC (out of 24.3K LoC), five person-days.

* Relatively low compute intensity = Unable to hide far-mem latency.

»Keep complex operations local and offload very light operations.
* Significantly reduces expensive data transfer over network.



NYC Taxi Analysis (C++ DataFrame)
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NYC Taxi Analysis (C++ DataFrame)

<-Fastswap “®-AlFM
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NYC Taxi Analysis (C++ DataFrame)
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NYC Taxi Analysis (C++ DataFrame)

<-Fastswap “®-AlFM
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NYC Taxi Analysis (C++ DataFrame)

<-Fastswap “®-AlFM
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Other Experiments

* Synthetic web frontend: up to 13X end-to-end speedup.
e Data structures microbenchmarks: up to 61X speedup.

* Design Drill-Down.

Read our paper for details.



Related Work

* OS-paging systems.
* Fastswap [EuroSys’ 20], Leap [ATC’ 20]

* Distributed shared memory.
* Treadmarks [IEEE Computer’ 96]

» Garbage collection (GC).
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Conclusion

* AIFM: Application-Integrated Far Memory.

* Key idea: swap memory using a userspace runtime.
» Data Structure Library: captures application semantics.
* Userspace Runtime: efficiently manages objects and memory.

* Achieves 13X end-to-end speedup over Fastswap.
» Code released at https://github.com/AIFM-sys/AIFM

Please send your questions to us
zainruan@csail.mit.edu


https://github.com/AIFM-sys/AIFM

