AlF
Applicati

Zain (Zhenyuan) Ruan®

"MIT CSAIL

fis

MITCSAIL

M: High-Perfor

on-Integrated

"Brown University

mance,

-ar Memory

Malte Schwarzkopf™ Marcos K. Aguilera* Adam Belay”

*YMware Research

vmware

In-Memory Applications

mlpandas

Data Analytics

v %V

vV
yoLros

Database

& redis

Web Caching

©

powergraph

Graph Processing

Memory Is Inelastic

» Limited by the server physical boundary.

Memory Is Inelastic

* Limited by the server physical boundary.

» Applications cannot overcommit memory.

Opening a 20GB file for analysis with pandas

Asked 2 years, 8 months ago Active 1 year, 4 months ago Viewed 81k times

| am currently trying to open a file with pandas and python for machine learning purposes it would

be ideal for me to have them all in a DataFrame. My RAM is 32 GB. | keep getting memory errors.
20N

Memory Is Inelastic

* Limited by the server physical boundary.

* Applications cannot overcommit memory.

Opening a 20GB file for analysis with pandas

Asked 2 years, 8 months ago Active 1 year, 4 months ago Viewed 81k times

| am currently trying to open a file with pandas and python for machine learning purposes it would

be ideal for me to have them all in a DataFrame. My RAM is 32 GB. | keep getting memory errors.
20N

» Expensive solution: overprovision memory for peak usage.

Trending Solution: Far Memory

» Leverage the idle memory of remote servers (with fast network).

. N (3 Fast Network (

TTTNL)
Local Memory NIC < >= NIC ! Far Memory
| 1
I |
\ J \ ! I{ J
,_—_—_—-’ ————————————— ~
1 |
Local Server : Remote Server :
| I

Existing Far-Memory Systems Perform Poorly

» Real-world Data Analytics from Kaggle.

[EEY

ideal

©c o o O
N bR O 00

Normalized Performance
o

Existing Far-Memory Systems Perform Poorly

* Real-world Data Analytics from Kaggle.
» Provision 25% of working set in local mem

g 1 — ideal
(-

e 0.8 70% of

S performance

£ 06 M state-of-the-art
Q wasted

- 0.4

Q

N

T 0.2

=

o

S 0

Existing Far-Memory Systems Perform Poorly

* Real-world Data Analytics from Kaggle.
* Provision 25% of working set in local mem.

»Goal: reclaim the wasted performance.

g 1 — ideal
(-

e 0.8 70% of

S performance

£ 06 M state-of-the-art
Q wasted

- 0.4

Q

N

T 0.2

=

o

S 0

Existing Far-Memory Systems Perform Poorly

* Real-world Data Analytics from Kaggle.
* Provision 25% of working set in local mem.

»Goal: reclaim the wasted performance.

g ! 7 ideal

C

e 0.8 70% of

ks 0.6 performance .

o wasted B state-of-the-art
0.4

E B AIFM (this work)

T 0.2

£

‘23 0

10

Existing Far-Memory Systems Perform Poorly

* Real-world Data Analytics from Kaggle.
* Provision 25% of working set in local mem.

»Goal: reclaim the wasted performance.

g 1 — ideal
(-
e 0.8 70% of
”cC) 0.6 performance B state-of-the-art
2 wasted
0.4
E B AIFM (this work)
© 0.2
=
‘ZD 0

11

Why Do Existing Systems Waste Performance?

* Problem: based on OS paging.
— Semantic gap.
— High kernel overheads.

Challenge 1: Semantic Gap

»Page granularity 2 R/W amplification.

Page

13

Challenge 1: Semantic Gap

»Page granularity 2 R/W amplification.

0S —» Page

App ——> @

Challenge 1: Semantic Gap

* Page granularity =2 R/W amplification.

0S —» Page

App ——>@

»0S lacks app knowledge = hard to prefetch, etc.

15

Challenge 1: Semantic Gap

* Page granularity =2 R/W amplification.

oS —»

Page

App —

—

»0S lacks app knowledge = hard to prefetch, etc.

—> —> —>

A segquence of rangom Memaory accesses.

Challenge 2: High Kernel Overheads

Challenge 2: High Kernel Overheads

> Expensive page faults.

APP
—

Remote Object

Kernel 1 s

Challenge 2: High Kernel Overheads

* Expensive page faults.

» Busy Polling for in-kernel net I/O = burn CPU cycles.

Kernel

APP

®

N

Remote Object

(3) Swap in page

Page Fault
Handler (8 us)

Net
(6 ps)

P
‘ % (4) Busy poll

19

Design Space

Perf.

Existing OS
@ paging systems

Transparency

Design Space

Manually manage
objects with RDMA

Perf.

Existing OS
@ paging systems

Transparency

Design Space

Manually manage
objects with RDMA

AIFM (this work)

Perf.

Existing OS
@ paging systems

Transparency

AlIFM’s Design Overview

» Key idea: swap memory using a userspace runtime.

AlIFM’s Design Overview

»Key idea: swap memory using a userspace runtime.

1. Semantic gap Remoteable Data structure library
(Amplification, Hard to prefetch)

2. Kernel overheads Userspace runtime
(page faults, busy poll for net 1/0)
3. Impact of Memory Reclamation Pauseless evacuator
(pause app threads)
4. network BW < DRAM BW Remote Agent

24

AIFM In Action

App User-
Level Thread O

Local Memory

Far Memory

1. Remoteable Data Structure Library

»Solved challenge: semantic gap.

App User-
Level Thread O

Local Memory

Far Memory

1. Remoteable Data Structure Library

»Solved challenge: semantic gap.

Remoteable
» Data Structure

App User-] library API
Level Thread O |

Local Memory

Far Memory

1. Remoteable Data Structure Library

»Solved challenge: semantic gap.

Remoteable
» Data Structure

App User-] library API
Level Thread O |

App Semantics

Local Memory

Far Memory

1. Remoteable Data Structure Library

»Solved challenge: semantic gap.

Remoteable
» Data Structure

App User-] library API
Level Thread O |

App Semantics

v

Prefetcher

Local Memory

Far Memory

2. Userspace Runtime

» Solved challenge: kernel overheads.

App User-] library API
Level Thread O |

Local Memory

Far Memory

>

Remoteable
Data Structure

App Semantics

v

Prefetcher

Ptr O

e

2. Userspace Runtime

» Solved challenge: kernel overheads.

ibrary Apl | _REMOteable < Ptr O

» Data Structure

Ptr 1

App Semantics

v

Prefetcher

Local Memory

Far Memory i B

2. Userspace Runtime

» Solved challenge: kernel overheads.

library API

Yield T

Local Memory

Far Memory

>

Remoteable
Data Structure

App Semantics

v

Prefetcher

Ptr O

<

Ptr 1

3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

[App User-] Iibrary API DRfmSOtteai)le PtrO
» Uadld ructure
Level Thread O |

Yield T App Seinantics Ptr 1

Prefetcher oo

Ptr N

Local Memory

Far Memory

3. Pauseless Evacuator

» Solved challenge: performance impact of memory reclamation.

[App User-] Iibrary API DRfmSOtteai)le Ptr O
» Uadld ructure
Level Thread O |

Yield T App Seinantics Ptr 1

Prefetcher oo

Ptr N

Local Memory (close to full)

Far Memory

3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

Remoteable Ptr O
» Data Structure

App User-] library API
Level Thread O |

Vield T App Seinantlcs Ptr 1
Pauseless
Prefetcher LD
Evacuator

Ptr N

Local Memory

Far Memory

35

3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

[App User-] Iibrary API Remoteable PtrO _®

» Data Structure

Level Thread 0 | .
i u
Vield T App Seinantlcs Ptr 1 W

Pauseless
Prefetcher Ll

Evacuator
ptr N > @LLD .o

Local Memory

Far Memory

36

3. Pauseless Evacuator

» Solved challenge: impact of memory reclamation.

[App User-] Iibrary API Remoteable PtrO _®

Data Structure
Level Thread O | d et

Vield T App Seinantics Ptr 1
Pauseless
Prefetcher eoe Evacuator

Ptr N

Local Memory

Far Memory

37

4. Remote Agent

»Solved challenge: network BW < DRAM BW.

[

App User-] library API

Level Thread O |

Vield T

Local Memory

Far Memory

>

Remoteable
Data Structure

App Semantics

v

Prefetcher

Pt 0

Ptr 1

Pauseless
Evacuator

Ptr N

J

4. Remote Agent

»Solved challenge: network BW < DRAM BW.

[

App User-] library API

Level Thread O |

Vield T

Local Memory

Far Memory

>

Remoteable

Data Structure

App Semantics

v

Prefetcher

Pt 0

Ptr 1

[

Remote
Agent

J

Pauseless
Evacuator

Ptr N

J

4. Remote Agent

»Solved challenge: network BW < DRAM BW.

[

App User-] library API

Level Thread O |

Vield T

Local Memory

Far Memory

Remoteable

» Data Structure

App Semantics

Pt 0

Ptr 1

v
Prefetcher
e.g., Copy Obj 1
\ 4
Remote
Agent

Pauseless
Evacuator

Ptr N

J

Sample Code

std::unordered_map<key t, int> hashtable;
std::array<LargeData> arr;

LargeData foo(std::list<key t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);
}

LargeData ret = arr.at(sum);
return ret;

}

41

Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys list) {
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);

}

LargeData ret = arr.at(sum);
return ret;

}

42

Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {
DerefScope scope;
sum += hashtable.at(key, scope);
}
DerefScope scope;
LargeData ret = arr.at(sum, scope);
return ret;

Ensure the accessed objects will
not be moved by the evacuator.

43

Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {
DerefScope scope;
sum += hashtable.at(key, scope);
}
DerefScope scope;
LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);
return ret;

4.4

Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {
DerefScope scope;
sum += hashtable.at(key, scope);

}

DerefScope scope;

LargeData ret = arr.at< true>(sum, scope);
return ret;

Prefetch list data.

45

Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {
DerefScope scope;
sum += hashtable.at(key, scope);

}

DerefScope scope;

LargeData ret = arr.at< true>(sum, scope);
return ret;

Prefetch list data.

Cache hot objects.

46

Sample Code

RemHashTable<key t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key t> &keys_list) {

iInt sum = 0;
for (auto key : keys_list) { Prefetch list data.
DerefScope scope;
sum += hashtable.at(key, scope); Cache hot objects.
}

DerefScope scope;

LargeData ret = arr.at</*don’t cache*/ true>(sum, scope); Avoid polluting local mem.
return ret;

47

Implementation

» Implemented 6 data structures.
* Array, List, Hashtable, Vector, Stack, and Queue.

Implementation

* Implemented 6 data structures.
* Array, List, Hashtable, Vector, Stack, and Queue.

»Runtime is built on top of Shenango [NSDI’ 19].

Implementation

* Implemented 6 data structures.
* Array, List, Hashtable, Vector, Stack, and Queue.

* Runtime is built on top of Shenango [NSDI’ 19].
» TCP far-memory backend.

Implementation

* Implemented 6 data structures.
* Array, List, Hashtable, Vector, Stack, and Queue.

* Runtime is built on top of Shenango [NSDI’ 19].

* TCP far-memory backend.
»LoC: 6.5K (runtime) + 5.5K (data structures) + 0.8K (Shenango)

Evaluation

»Setup: 1 compute server + 1 far memory server, 25 GbE.

Evaluation

e Setup: 1 compute server + 1 far memory server, 25 GbE.
* How does AIFM

» ... perform on applications with different compute intensities?

Evaluation

e Setup: 1 compute server + 1 far memory server, 25 GbE.
* How does AIFM

* ... perform on applications with different compute intensities?
» ... compare to the local-only (ideal) system?

Evaluation

e Setup: 1 compute server + 1 far memory server, 25 GbE.
* How does AIFM

* ... perform on applications with different compute intensities?
e ...compare to the local-only (ideal) system?
» ... compare to the state-of-the-art paging system, Fastswap [EuroSys’ 20]?

Performance on Different Compute Intensities

Normalized Performance

1

0.8

0.6

0.4

0.2

0

0

2 4 6 8 10 12
Microseconds of compute per far memory access

ideal

56

Performance on Different Compute Intensities

<-Fastswap

C ~
g 0.8 Converged to 1 at ~50 pus
o
T 0.6
Q
(ol
- 04
Q
N
© 0.2
£
O 0
=

0 2 4 6 8 10 12

Microseconds of compute per far memory access

57

Performance on Different Compute Intensities

<-Fastswap ®-AlFM
1 ideal

0.8 Converged to 1 at ~50 pus

0.6
0.4
0.2

0
0 2 4 6 3 10 12

Microseconds of compute per far memory access

Normalized Performance

AIFM hides far memory latency with moderate compute.

58

Performance on Different Compute Intensities

Normalized Performance

1

0.8

0.6

0.4

0.2

0

<-Fastswap ®-AlFM
ideal

0 2 4 6 8 10 12
Microseconds of compute per far memory access

AIFM hides far memory latency with moderate compute.

59

Performance on Different Compute Intensities

<-Fastswap ®-AlFM
1 ideal

0.8

0.6

= 13X in Synthetic Web
Frontend

0.4
0.2

0
0 2 4 6 3 10 12

Microseconds of compute per far memory access

Normalized Performance

60

Performance on Different Compute Intensities

<-Fastswap ®-AlFM
1 ideal

0.8

0.6

= 13X in Synthetic Web
Frontend

0.4

0.2

0
0 2 4 6 3 10 12

Microseconds of compute per far memory access

Normalized Performance

61

NYC Taxi Analysis (C++ DataFrame)

»DataFrame: data analytical framework, similar to Python Pandas.

NYC Taxi Analysis (C++ DataFrame)

* DataFrame: data analytical framework, similar to Python Pandas.

» Real Kaggle workload
* Working set size = 31 GB.
* Modify 1.4K LoC (out of 24.3K LoC), five person-days.

NYC Taxi Analysis (C++ DataFrame)

* DataFrame: data analytical framework, similar to Python Pandas.

* Real Kaggle workload

* Working set size = 31 GB.
* Modify 1.4K LoC (out of 24.3K LoC), five person-days.

» Relatively low compute intensity = Unable to hide far-mem latency.

NYC Taxi Analysis (C++ DataFrame)

* DataFrame: data analytical framework, similar to Python Pandas.

* Real Kaggle workload
* Working set size = 31 GB.
* Modify 1.4K LoC (out of 24.3K LoC), five person-days.

* Relatively low compute intensity = Unable to hide far-mem latency.

»Keep complex operations local and offload very light operations.
* Significantly reduces expensive data transfer over network.

NYC Taxi Analysis (C++ DataFrame)

Normalized Performance

0.8

0.6

0.4

0.2

20

40 60
Local Memory Ratio (%)

80

100

ideal

66

NYC Taxi Analysis (C++ DataFrame)

<-Fastswap “®-AlFM

Normalized Performance

0 20 40 60 80
Local Memory Ratio (%)

100

67

NYC Taxi Analysis (C++ DataFrame)

<-Fastswap “®-AlFM
ideal

0.8

0.6

0.4

0.2

Normalized Performance

0 20 40 60 80 100
Local Memory Ratio (%)

AIFM achieves near-ideal performance with small local memory.

68

NYC Taxi Analysis (C++ DataFrame)

<-Fastswap “®-AlFM

ideal

0.6 (x=3%, y=0.77)

0.4

0.2

Normalized Performance

0 20 40 60 80 100
Local Memory Ratio (%)

AIFM achieves near-ideal performance with small local memory.

69

NYC Taxi Analysis (C++ DataFrame)

<-Fastswap “®-AlFM

9 1 ideal
% .I HENE
g 08 - (x=23%, y=0.95)
L I
S 06 1(y=3% y=0.77)
(o
T 04
Q
N
© 0.2
-
o
S 0

0 20 40 60 80 100

Local Memory Ratio (%)

AIFM achieves near-ideal performance with small local memory.

70

Other Experiments

* Synthetic web frontend: up to 13X end-to-end speedup.
e Data structures microbenchmarks: up to 61X speedup.

* Design Drill-Down.

Read our paper for details.

Related Work

* OS-paging systems.
* Fastswap [EuroSys’ 20], Leap [ATC’ 20]

* Distributed shared memory.
* Treadmarks [IEEE Computer’ 96]

» Garbage collection (GC).

Conclusion

» AIFM: Application-Integrated Far Memory.

Conclusion

* AIFM: Application-Integrated Far Memory.

»Key idea: swap memory using a userspace runtime.

Conclusion

* AIFM: Application-Integrated Far Memory.

* Key idea: swap memory using a userspace runtime.
» Data Structure Library: captures application semantics.

Conclusion

* AIFM: Application-Integrated Far Memory.

* Key idea: swap memory using a userspace runtime.
» Data Structure Library: captures application semantics.
» Userspace Runtime: efficiently manages objects and memory.

Conclusion

* AIFM: Application-Integrated Far Memory.

* Key idea: swap memory using a userspace runtime.
» Data Structure Library: captures application semantics.
* Userspace Runtime: efficiently manages objects and memory.

» Achieves 13X end-to-end speedup over Fastswap.

Conclusion

* AIFM: Application-Integrated Far Memory.

* Key idea: swap memory using a userspace runtime.
» Data Structure Library: captures application semantics.
* Userspace Runtime: efficiently manages objects and memory.

* Achieves 13X end-to-end speedup over Fastswap.
» Code released at https://github.com/AIFM-sys/AIFM

Please send your questions to us
zainruan@csail.mit.edu

https://github.com/AIFM-sys/AIFM

