Orchard: Differentially
Private Analytics at Scale

Edo Rotn, : enjamin Pierce

Where
should | put
my facilities?

Scenario

e Task: A large retailer wants to determine L
where to build extra shipping containers Aggregator

Random initial
cluster centers

e Users have devices (mobile or desktop)
with an app that has their location

Centers become
more accurate
over multiple

rounds

 |f we had a central database, could run
k-means over users’ locations

* Concern: privacy!

- Users (millions)

Goals

* Leave raw data on users’ devices and run a distributed protocol to compute the
results that the aggregator wants
* Differential Privacy to reason about aggregative sensitive information
* Gold standard for privacy - strong, formal guarantee
* Hides individual contributions by adding random noise

? & x1
. \ True result
? &x2

? 8 X3> F(x1, x2, X3, x4) [WAWA > F w
? S x4 /

* What else might we desire out of a system like this?
* Scalability to millions or even > 1 billion users!
of query results
* No Trusted Party — can be hard to find in practice

Related Work

Differential Privacy in Practice

Accuracy
ypto (e.g.,

Systems with
e MPC)

anytrust model

(e.g, Prio, Unlynx, Outis.
Scalability

———

Local Differential Privacy

Honeycrisp [SOSP '19] can achieve all of this!

Challenges

BUT:

* Honeycrisp can only do one
specific query — Count Mean
Sketch, motivated by Apple iOS

e Essentially sums up local sketches

* There are LOTS of other queries
people might want to ask

Query

ID3
K-means

Perceptron

PCA

Logistic Regression

Naive Bayes

Neural Network

Histogram

K-median

Query

CDF

Range queries

Bloom filters

Count Mean Sketch §—

Sparse Vector

DStress

PATE

Iterative Database
Construction

Do we need to build a new system for each one?

Honey-
crisp!

Insight

Observation: many queries can be
transformed into:

node-local operations
+

(w/ some)

Not a coincidence — a natu.ral
consequence of DP mechanisms

We can transform many complex
queries into ones that use mostly sums!

Honeycrisp can be run on most queries
(with a small generalization)

let d1 = sqdist cl pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt
in if di1<d2 and di1<d3 then 0 else if d2<dl and d2<d3
then 1 else 2
fil0ISE TOCJIXY SIZ€ = do
let (x, y) = totalXy
in do x’ « lap 1.0 x
y’ « lap 1.0 y
size’ « lap 1.0 size
return (x’/size’, y’/size’)
tolaicuuius pLs> -
let ptxs = bmap fst pts
ptys.—.hmap snd pts
in 'bsum 1.0 p*=. bsum 1.0 ptys)
countPoincs pes = bsum 1.v (bmap (\pt » 1) pts)

bpartition 3 (assign cl c2 c3) pts plTotalXy =
totalCoords pl

plSize = countPoints pl

p2TotalXY = totalCoords p2

p2Size = countPoints p2 p3TotalXY = totalCoords p3
p3Size = countPoints p3

cl’ <« noise|plTotalXY plSize
c2’ <« noise|[p2TotalXY p2Size
c3’ <« noise/p3TotalXY p3Size

num_icer++
return (cl1’, c2’, c3’)

Aggregator

Orchard Workfl .
rcnar Orkriow LJ g

ﬂu AA A

e Aggregator writes (centralized) query Query

* Orchard translates to a distributed query Committee
e Users process local data and encrypt results
* Encrypted results are securely aggregated

 Committee adds noise and returns query result

* Aggregator sees only the result, but never any
individual’s data

6

Users (millions)

Outline (Rest of talk)

* Orchard Details
* Threat Model
* Orchard Map
* Orchard Walk-Through
* Optimizations
* Defense against Malicious Users

* Evaluation

7

Threat Model

* Aggregator is Honest-but-Curious but occasionally Byzantine
* For short periods of time, not at the beginning

* Users are mostly correct
A small fraction of the users (~¥1-5%) can be Byzantine

(IS

S
ggge @ i evices!
B

1/3 malicious =

3% malicious =
430mil devices!

39mil devices

R

Honeycrisp + Orchard

Byzantine Fault
Tolerance Literature

Orchard Map

* Programs are composed of BMCS calls -
— any state required between rounds
2. Map —local function by each user — one complete round of Honeycrisp!
3. Clip —for differential privacy
— Aggregation of ciphertexts —

* Orchard transforms an original query:
1. Recognizing boundaries of these rounds
2. Splitting them up automatically
3. Reducing program to multiple rounds of Honeycrisp

Orchard Walk-Through

a0

Users

10

Aggregator

SIS
SIS]

Committee

BMCS

Orchard Walk-Through

Initial cluster centers:
(1, 1), (3, 3)

_____________________________________ N
- - Aggregator -
(2.5,3.1) &= | (0,0 — 7 e 6% |
Private data: (1.2,1.6) & > 0,0) il E’ |
(1.5,1.6) & = (0, 0) :
(3.2,3.008 = (0,0) R
Users £ 8 8

. Committee

Users map their data according to the query & perform clipping as needed,
encrypting the results

11

Orchard Walk-Through

(0, 0)
(1.2, 1.6)

(2.5, 3.1)
(0, 0)

(1.5, 1.6)
(0, 0)

(0, 0)
(3.2, 3.0)

(2.7, 3.2)

(5.7, 6.1)

H

8 8 8 (2.69, 3.21)

(5.72, 6.08)] !

. Committee

The committee adds noise to the summed (encrypted) result & jointly decrypts it

12

BMCS

New cluster centers:
(1.345, 1.605), (2.86, 3.03)

Cluster1 Cluster2 T
e

/
/

1 \

1

1

1 1

1

1

1

1

1

1

Orchard Walk-Through

S=»| (00 |(53.1)
S| (12,16 | (00
3 * (1.5, 1.6) (0, 0) (2.7, 3.2)](5.7, 6.1)
E=»| 00 | 3230 H

Users ‘
.\ & 3‘ & (2.69, 3.21) | (5.72, 6.08)|—
. Committee '

The (differentially private) result is released to the aggregator, who may
initiate subsequent rounds through broadcast

13

Orchard Zones

* Orchard has 3 zones (red, , and)
* Roughly correspond to:
* users [map, clip],
, and

* These zones naturally exist in most DP query languages, not just ours!

K-Means Example

while (num_iter < total iters):
assign cl c2 c3 pt =
let dl1 = sqdist cl1 pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt
in if dl<d2 and d1<d3 then 0@ else
if d2<dl and d2<d3 then 1 else 2

noise totalXY size = do

countPoints pts = bsum 1.0 (bmap

(\pt » 1) pts)

step cl1 c2 c3 pts =

let [pl; p2, p3] =

bpartition 3 (assign cl c2 c3)
pts plTotalXY = totalCoords pl
plSize = countPoints pl
p2TotalXY = totalCoords p2

let (x, y) = totalXy

in do x’ « lap 1.0 X

y’ « lap 1.0 y

size’ « lap 1.0 size

return (x’/size’, y’/size’)

totalCoords pts =

let ptxs = bmap fst pts

ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

p2Size = countPoints p2
p3TotalXY = totalCoords p3
p3Size = countPoints p3

in do
cl’ <« noise plTotalXY plSize
c2’ <« noise p2TotalXY p2Size
c3’ <« noise p3TotalXY p3Size
num_iter++

return (cl1’, c2’, c3’)

K-Means Example

let d1 = sqdist cl pt
d2 = sqgdist c2 pt

3 = sqdist c3 pt

in if dl1<d2 and dl1<d3 then © else
if d2<dl1l and d2<d3 then 1 else 2

noise totalXY size = do

let (x, y) = totalXy

in do x’ « lap 1.0 x

y’ « lap 1.0 vy

size’ « lap 1.0 size

return (x’/size’, y’/size’)

totalCoords pts =

16

let ptxs = bmap fst pts
ptys = bmap snd pts

in (bsum 1.0 ptxs, bsum 1.0 ptys)

/ E.g., assign function matches closest center to each user

countPoints pts = bsum 1.0 (bmap

(\pt »> 1) pts)
step cl c2 c3 pts =

let [pl; p2, p3] =

bpartition 3 (assign cl c2 c3)
pts plTotalXY = totalCoords pl
plSize = countPoints pl
p2TotalXY = totalCoords p2
p2Size = countPoints p2
p3TotalXY = totalCoords p3
p3Size = countPoints p3

in do

cl’ <« noise plTotalXY plSize
c2’ <« noise p2TotalXY p2Size
c3’ <« noise p3TotalXY p3Size
num_iter++

return (cl1’, c2’, c3’)

K-Means Example

while (num_iter < total iters):

17

assign cl c2 c3 pt =
let dl1 = sqdist cl pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt

in if dl1<d2 and dl1<d3 then © e
if d2<dl1l and d2<d3 then 1 e

noise totalXY size = do
in do x’ « lap 1.0 X
y’ « lap 1.0 y
size’ « lap 1.0 size
return (x’/size’, y’/size’)
totalCoords pts =
let ptxs = bmap fst pts

pty bmap snd pt
in 1.@ ptxs,l.@ ptys)

aggregate variables!

ep cl c2 c3 pts =
let [pl, p2, p3]
bpartition 3 (\assign cl c2 c3)
pts plTotalXY = totalCoords pl
plSize = countPojnts pl
p2TotalXY = totalCoords p2
p2Size = countPoints p2
p3TotalXY = totalCoprds p3
p3Size = countPoints\p3
in do
cl’ <« noise|lplTotalXY plSize
c2’ « noise||p2TotalXY p2Size
c3’ <« noise|p3TotalXY p3Size
num_iter++
return (cl1’, c2’, c3’)

K-Means Example

while (num_iter < total iters):

18

assign cl c2 c3 pt =
let dl1 = sqdist cl pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt

in if dl1<d2 and dl1<d3 then © e
if d2<dl1l and d2<d3 then 1 e

noise totalXY size = do
in do x* « lap 1.0 X
y’ « lap 1.0 y
size’ « lap 1.0 size
return (x’/size’, y’/size’)
totalCoords pts =
let ptxs = bmap fst pts

pty bmap snd pt
in 1.6 ptxs,l.@ ptys)

aggregate variables!

ep cl c2 c3 pts =
let [pl, p2, p3]
bpartition 3 (\assign cl c2 c3)
pts plTotalXY = totalCoords pl
plSize = countPojnts pl
p2TotalXY = totalCoords p2
p2Size = countPoints p2
p3TotalXY = totalCoprds p3
p3Size = countPoints\p3
in do
cl’ « noisellplTotalXY plSize
c2’ « noisellp2TotalXY p2Size
c3’ « noisellp3TotalXY p3Size
num_iter++
return (cl1’, c2’, c3’)

K-Means Example

while (num_iter < total iters):

assign cl c2 c3 pt = countPoints pts = bsum 1.0 (bmap
let d1 = sqdist c1 pt (\pt » 1) pts)
d2 = sqdist c2 pt step cl c2 c3 pts =

let [pl; p2, p3] =
bpartition 3 (assign cl c2 c3)
pts plTotalXY = totalCoords pl
plSize = countPoints pl

d3 = sqdist c3 pt

in if d1<d2 and d1<d3 then 0 else
if d2<dl1l and d2<d3 then 1 else 2

noise totalXY size = do p2TotalXY = totalCoords p2
let (x, y) = totalXy p2Size = countPoints p2
in do X p3TotalXY = totalCoords p3
y p3Size = countPoints p3
in do
cl’ « plTotalXY plSize
c2’ « p2TotalXY p2Size
totalCoords pts = c3’ <« p3TotalXY p3Size
let ptxs = bmap fst pts num_iter++
ptys = bmap snd pts return (cl1’, c2’, c3’)

. in (bsum 1.0 ptxs, bsum 1.0 ptys)

K' I\/I e a n S Exa m J ‘ e Can broadcast new centers in the clear!
- |

assign cl c2 c3 pt = countPoints pts = bsum 1.0 (bmap
let d1 = sqdist c1 pt (\pt » 1) pts)
d2 = sqgdist c2 pt step cl c2 c3 pt* =
let [p1, p2,[p3] =

d3 = sqdist c3 pt

in if d1<d2 and d1<d3 then 0 else
if d2<dl1l and d2<d3 then 1 else 2

bpartitign 3 (assign cl c2 c3)
pts plTotalXY = totalCoords pl

plSize =] countPoints pl
noise totalXY size = do p2TotalXy = totalCoords p2
let (x, y) = totalXy p2Size # countPoints p2
in do x’ « lap 1.0 x p3TotalXyY = totalCoords p3
y’ « lap 1.0 y p3Size F countPoints p3
in do

size’ « lap 1.0 size .)
cl’ e« |noise plTotalXY plSize

c2’ «[noise p2TotalXY p2Size
totalCoords pts = c3’ <«"noise p3TotalXY p3Size

let ptxs = bmap fst pts num_iter++
ptys = bmap snd pts return (cl’, c2’, c3’)

in (bsum 1.0 ptxs, bsum 1.0 ptys)

return (x’/size’, y’/size’)

20

Outline (Rest of talk)

* Optimizations
* Defense against Malicious Users

* Evaluation

21

Optimizations

noise totalXY size = do
let (x, y) = totalXy
in do x’ « lap 1.0 x
y’ « lap 1.0 y
size’ « lap 1.0 size
return (x’/size’, y’/size’)

totalCoords pts =
let ptxs = bmap fst pts

ptys ap snd pts
in .0 ptxs,.@ ptys)
countPoints pts =@.0 (bmap (\pt » 1) pts)

22

Optimizations

noise totalXY size = do
= totalXY
in do x’ « lap 1.0 x
y’ « lap 1.0y

size’ « lap 1.0 size
return (x’/size’, y’/size’)

3 variables we
need to aggregate
and add noise to!

totalCoords pts =
let ptxs = bmap fst pts

ptys ap snd pts
in .0 ptxs,.@ ptys)
countPoints pts =@.0 (bmap (\pt » 1) pts)

Each one of these bsum operations (naively)
requires a complete round of Honeycrisp!

23

X1+x2+x3+x4

.x1+x2 .X3+x4
1 ! 1 1 ! 1
H N B B

Aggregating ‘x’ across all users

y1l+y2+y3+y4

- W
1 ! 1 1 ! 1
B B H N

Aggregating ‘y’ across all users

s1+s2+s3+s4

.sl+52 .53+s4
| ! 1 | ! 1
H N N B

Aggregating ‘size’ across all users

Optimizations

We can pack many ciphertexts into one vector and only aggregate once!

x1+x2+x3+x4 y1l+y2+y3+y4 ” s1+s2+s3+s4

x1+x2 X3+x4 y1+y2 . y3+y4 . s1+s2 . s3+s4

T O 0N O T U TOE OO L

San m

Optimizations
We can pack many ciphertexts into one vector and only aggregate once!

x1+x2 yl+y2 s1+s2
+ + +

X3+x4 y3+y4d s3+s4

x1+x2 yl+y2 sl+s2 x3+x4 y3+y4 s3+s4

The transformation fuses BMCS calls that do not depend on each other — full details in paper!

25

Robustness

 What to do about malicious users?
* In Honeycrisp, we already use ZK proofs to ensure proper encryption

* In Orchard, multiple rounds introduce a new (and powerful!) attack vector
* Goal: malicious users should not be able to significantly distort the answers

* Example:
* Submit a (false!) update to shift facility center to malicious target

Robustness

27

3 rounds, 2 clusters

7

Robustness

28

Initial (random) clusters

7

Robustness

29

Clusters after round 1

Robustness

30

Clusters after round 2 — minor updates

Robustness

Clusters after round 2

Wants to move ®
cluster to California °

4

31

Robustness

Clusters after round 2

Positions themselves
in different location

&9 e

32

Robustness

Clusters after round 3

Positions themselves
in different location

&9 yr

33

Robustness

Novel Defense: Use commitments & zero-knowledge proofs to
ensure that the data each user uploads is consistent

34

Evaluation

Questions we wanted to answer in the paper:

* How many private queries can Orchard support?

* How well do Orchard’s optimizations work?

* How effective are Orchard’s defenses against malicious clients?
* What are the costs of Orchard?

Full results in paper!

Evaluation

36

Query Orchard Support Query Orchard Support
ID3 CDF

K-means Range queries

Perceptron Bloom filters

PCA Count Mean Sketch

Logistic Regression

Naive Bayes

Sparse Vector

Neural Network

DStress

Histogram

PATE

K-median

Iterative Database
Construction

17 queries from literature survey

Evaluation

37

Query Orchard Support Query Orchard Support
ID3 X CDF X
K-means Range queries X
Perceptron X Bloom filters X

PCA X Count Mean Sketch v
Logistic Regression X Sparse Vector X

Naive Bayes X DStress X

Neural Network X PATE X
Histogram X lterative Database X
K-median X Construction

Honeycrisp

Evaluation

38

Query Orchard Support Query Orchard Support
ID3 v CDF v
K-means v Range queries v
Perceptron v Bloom filters v

PCA v Count Mean Sketch v
Logistic Regression v Sparse Vector v

Naive Bayes v DStress X

Neural Network v PATE X
Histogram v lterative Database X
K-median V4 Construction

Orchard can answer 14/17 queries we looked at!

Evaluation

Query # Naive Rounds Optimized Query # Naive Rounds Optimized

ID3 CDF

K-means Range queries

Perceptron Bloom filters

PCA Count Mean Sketch

Logistic Regression Sparse Vector

Naive Bayes

Neural Network

Histogram Measuring total number of BMCS calls
el (with and without our optimizations)

39

Evaluation

Query # Naive Rounds Optimized
ID3 2md

K-means 3m

Perceptron 2md

PCA d*+d

Logistic Regression d+1

Naive Bayes 2d

Neural Network 2m(d + 1)

Histogram b

K-median 3m

40

Query

Naive Rounds

Optimized

CDF

Range queries

Bloom filters

Count Mean Sketch

Sparse Vector

= QLT

Measuring total number of BMCS calls

(with and without our optimizations)

Evaluation

Query # Naive Rounds Optimized Query # Naive Rounds Optimized

ID3 2md m+1 CDF b 1

K-means 3m m+1 Range queries b 1
Perceptron 2md m+1 Bloom filters d 1

PCA d?+d 1 Count Mean Sketch d 1

Logistic Regression d+1 2 Sparse Vector 1 1

Naive Bayes 2d 2

Neural Network 2m(d + 1) m+1

Histogram , . Measuring total number of BMCS calls
el B . (with and without our optimizations)

Optimizations save many total rounds!

41

Evaluation - Robustness

Simulation of attack with 10K total users

42

Distance from Malicious Target (miles)

250 Orchard =—¥—

LDP —e—

GDP —B—

200 20 miles v
150 +
100 +

Attack success
/ threshold
50t
011|0 1 0|0 1|k 10k

Number of Attackers

Evaluation - Robustness

Simulation of attack with 10K total users

43

Distance from Malicious Target (miles)

N
(o)
o

200 1

150

100

With LDP or GDP, a single 'bad apple' can spoil the whole result

Orchard =—#—
LDP —6—
GDP —B—

20 miles

Number of Attackers

Evaluation - Robustness

Simulation of attack with 10K total users

44

Distance from Malicious Target (miles)

N
(o)
o

Orchard =¥

[GOP —=—
20 miles

150

100

Number of Attackers

With LDP or GDP, a single 'bad apple' can spoil the whole result
With Orchard, the malicious users would have to be in the majority!

Evaluation - Users

Traffic (MB)

Computation (min)

25

0.2y

N
(¢)]

)

—
T

Costs for all (non-committee) participants

I Sum Verif.
— Ciphertexts

H H H ~ @ Range Proofs
9 \ ’ %

’3’ C pe) / 7, Pe) 1 6} ¢ < C .
S ‘2 e 9 2 o 7 Z 0 ® % 9% 2,
O G >V %’?@ v 7 ‘°o,§ %, '%0 S
Algorithm
=] EmmN Encryption
= E== Proof gen.
|—| |—| ‘ [—] Other
5 C 2 Z 7 o) _ 7, < 7. < < O 2.
C.. g e 0 2 e 7 Z (o) Y % T Oa %,
% % (O Qo’,%‘ v 7 %/; % 63@0 o

Algorithm

Cost varies a bit with
qguery, but is generally
fairly low

Most users:
e send less than 25MB of

traffic
 spendupto 25

minutes of

computation time

If elected to committee, requires substantially more

Most users’ costs (>99.99%) are low!

Evaluation - Aggregator

1x10°
100000 ¢
10000 * Both bandwidth and computation scale linearly with
§ /./ number of rounds and participants
o 100}
£ 1o}
11 1 round ==
oq 20 founds e * MAX costs:
1507 1910 1310 150 e 892 cores, or 74 machines with two CPUs each.
Number of Participants
10000 * 13,180 TB = 10 MB per user (~5 average
2 1000| webpages!)
g ol * Much of this can be offloaded to CDNs
i)
£ 1o}
£
8 1t 31 rougd
0.1 =20 oS Absolute costs are within reach of a data center

13107 13108 1.3*109 131010
Number of Participants

46

summary

Goal: federated analytics at massive scale, with strong privacy guarantees

Challenges:
* Many different queries, no general-purpose solution
* Small groups of malicious users can manipulate results

hankY
‘hank You!
|Idea: transform queries to expose internal sums
* Can be done for most queries we found Contact: edoroth@seas.upenn.edu
* Enables Honeycrisp-style aggregation (w/ some generalizations)
* ZKP’s can be used to prevent manipulation

Our solution: Orchard
e Automatic query transformation, with optimizations
* Scales almost linearly, to billions of users
* Good accuracy, even if some users are malicious

47

