
0



Scenario
• Task: A large retailer wants to determine 

where to build extra shipping containers

• Users have devices (mobile or desktop) 
with an app that has their location

• If we had a central database, could run 
k-means over users’ locations

• Concern: privacy!

Users (millions)

Aggregator

Where 
should I put 
my facilities?

1

Random initial 
cluster centers

Centers become 
more accurate 
over multiple 

rounds



Goals
• Leave raw data on users’ devices and run a distributed protocol to compute the 

results that the aggregator wants
• Differential Privacy to reason about aggregative sensitive information
• Gold standard for privacy - strong, formal guarantee 
• Hides individual contributions by adding random noise

• What else might we desire out of a system like this?
• Scalability to millions or even > 1 billion users!
• Accuracy of query results
• No Trusted Party – can be hard to find in practice

2

x2
x1

x3

x4

F(x1, x2, x3, x4) F’

True result
?
?

?

?



Related Work

Honeycrisp [SOSP ’19] can achieve all of this!

Accuracy

Scalability No Trusted Party

Local Differential Privacy

Crypto (e.g.,  
secure MPC)

Systems with 
anytrust model

(e.g, Prio, Unlynx, Outis...)

3

Differential Privacy in Practice 



Challenges

BUT:
• Honeycrisp can only do one 

specific query – Count Mean 
Sketch, motivated by Apple iOS
• Essentially sums up local sketches

• There are LOTS of other queries 
people might want to ask

Query

ID3

K-means

Perceptron

PCA

Logistic Regression

Naive Bayes

Neural Network

Histogram

K-median

Query

CDF

Range queries

Bloom filters

Count Mean Sketch

Sparse Vector

DStress

PATE

Iterative Database 
Construction

Do we need to build a new system for each one?

Honey-
crisp!

4



Insight
Observation:  many queries can be 

transformed into:
node-local operations
+ sequences of sums

(w/ some public computation) 

Not a coincidence – a natural 
consequence of DP mechanisms

We can transform many complex 
queries into ones that use mostly sums! 

Honeycrisp can be run on most queries 
(with a small generalization)

assign c1 c2 c3 pt = 
let d1 = sqdist c1 pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt
in if d1<d2 and d1<d3 then 0 else if d2<d1 and d2<d3 
then 1 else 2 

noise totalXY size = do 
let (x, y) = totalXY
in do x’ ← lap 1.0 x 
y’ ← lap 1.0 y 
size’ ← lap 1.0 size 
return (x’/size’, y’/size’) 

totalCoords pts =
let ptxs = bmap fst pts 
ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts =  bsum 1.0 (bmap (\pt → 1) pts) 
step c1 c2 c3 pts = 

let [p1, p2, p3] = 
bpartition 3 (assign c1 c2 c3) pts p1TotalXY = 
totalCoords p1
p1Size = countPoints p1
p2TotalXY = totalCoords p2 
p2Size = countPoints p2 p3TotalXY = totalCoords p3 
p3Size = countPoints p3 

in do 
c1’ ← noise p1TotalXY p1Size 
c2’ ← noise p2TotalXY p2Size 
c3’ ← noise p3TotalXY p3Size
num_iter++ 

return (c1’, c2’, c3’)

K-means code

5



Orchard Workflow

• Aggregator writes (centralized) query

• Orchard translates to a distributed query 

• Users process local data and encrypt results

• Encrypted results are securely aggregated

• Committee adds noise and returns query result

• Aggregator sees only the result, but never any 
individual’s data

Aggregator

Users (millions)

Query

Committee

Distributed Query

6



Outline (Rest of talk)

• High-Level
• Scenario
• Challenges
• Insight
• Orchard Workflow

• Orchard Details
• Threat Model
• Orchard Map
• Orchard Walk-Through
• Optimizations
• Defense against Malicious Users

• Evaluation

7



Threat Model

• Aggregator is Honest-but-Curious but occasionally Byzantine
• For short periods of time, not at the beginning

1/3 malicious =  
430mil devices!

3% malicious = 
39mil devices

• Users are mostly correct
• A small fraction of the users (~1-5%) can be Byzantine

Byzantine Fault 
Tolerance Literature

Honeycrisp + Orchard

Target: 1.3 billion 
iOS devices!

8



Orchard Map

• Programs are composed of BMCS calls
1. Broadcast – any state required between rounds
2. Map – local function by each user
3. Clip – for differential privacy
4. Sum – Aggregation of ciphertexts

• Orchard transforms an original query:
1. Recognizing boundaries of these rounds
2. Splitting them up automatically
3. Reducing program to multiple rounds of Honeycrisp

one complete round of Honeycrisp!

9



Orchard Walk-Through

Users

Aggregator

Committee

10

B M C S



Orchard Walk-Through

Users

Cluster 1 Cluster 2

Users map their data according to the query & perform clipping as needed,
encrypting the results

(2.5, 3.1)

(1.2, 1.6)

(1.5, 1.6)

(3.2, 3.0)

Initial cluster centers:
(1, 1), (3, 3)

Aggregator

Committee

Private data:

11

B M C S

(0, 0)

(0, 0)

(0, 0)

(0, 0)



Orchard Walk-Through

Users

Cluster 1 Cluster 2

(2.5, 3.1)

(1.2, 1.6)
(1.5, 1.6)

(3.2, 3.0)

Aggregator

Committee

12

B M C S

(0, 0)

(0, 0)

(0, 0)

(0, 0)

Add noise

Sum

(2.69, 3.21)    (5.72, 6.08)

(2.7, 3.2)  (5.7, 6.1)

The committee adds noise to the summed (encrypted) result & jointly decrypts it 



Orchard Walk-Through

Users

Cluster 1 Cluster 2

(2.5, 3.1)

(1.2, 1.6)
(1.5, 1.6)

(3.2, 3.0)

Aggregator

Committee

13

B M C S

(0, 0)

(0, 0)

(0, 0)

(0, 0)

Add noise

Sum

(2.69, 3.21)    (5.72, 6.08)

(2.7, 3.2)  (5.7, 6.1)

New cluster centers:
(1.345, 1.605), (2.86, 3.03)

Postprocess 
and release

The (differentially private) result is released to the aggregator, who may 
initiate subsequent rounds through broadcast



Orchard Zones

• Orchard has 3 zones (red, orange, and green)
• Roughly correspond to: 
• users [map, clip], 
• committee members [sum], and 
• aggregator [broadcast]

• These zones naturally exist in most DP query languages, not just ours!

14



K-Means Example
assign c1 c2 c3 pt = 

let d1 = sqdist c1 pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt
in if d1<d2 and d1<d3 then 0 else 
if d2<d1 and d2<d3 then 1 else 2 

noise totalXY size = do 
let (x, y) = totalXY
in do x’ ← lap 1.0 x
y’ ← lap 1.0 y 
size’ ← lap 1.0 size 
return (x’/size’, y’/size’) 

totalCoords pts =
let ptxs = bmap fst pts 
ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts =  bsum 1.0 (bmap
(\pt → 1) pts) 
step c1 c2 c3 pts = 

let [p1, p2, p3] = 
bpartition 3 (assign c1 c2 c3) 
pts p1TotalXY = totalCoords p1
p1Size = countPoints p1
p2TotalXY = totalCoords p2 
p2Size = countPoints p2 
p3TotalXY = totalCoords p3 
p3Size = countPoints p3 

in do 
c1’ ← noise p1TotalXY p1Size 
c2’ ← noise p2TotalXY p2Size 
c3’ ← noise p3TotalXY p3Size
num_iter++ 

return (c1’, c2’, c3’) 

while (num_iter < total_iters):

15



K-Means Example
assign c1 c2 c3 pt = 

let d1 = sqdist c1 pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt
in if d1<d2 and d1<d3 then 0 else 
if d2<d1 and d2<d3 then 1 else 2 

noise totalXY size = do 
let (x, y) = totalXY
in do x’ ← lap 1.0 x
y’ ← lap 1.0 y
size’ ← lap 1.0 size 
return (x’/size’, y’/size’) 

totalCoords pts =
let ptxs = bmap fst pts 
ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts =  bsum 1.0 (bmap
(\pt → 1) pts) 
step c1 c2 c3 pts = 

let [p1, p2, p3] = 
bpartition 3 (assign c1 c2 c3) 
pts p1TotalXY = totalCoords p1
p1Size = countPoints p1
p2TotalXY = totalCoords p2 
p2Size = countPoints p2 
p3TotalXY = totalCoords p3 
p3Size = countPoints p3 

in do 
c1’ ← noise p1TotalXY p1Size 
c2’ ← noise p2TotalXY p2Size 
c3’ ← noise p3TotalXY p3Size
num_iter++ 

return (c1’, c2’, c3’) 

while (num_iter < total_iters):

Red-zone code always operates on an individual 
element — data from a a single user

E.g., assign function matches closest center to each user 

16



K-Means Example
assign c1 c2 c3 pt = 

let d1 = sqdist c1 pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt
in if d1<d2 and d1<d3 then 0 else 
if d2<d1 and d2<d3 then 1 else 2 

noise totalXY size = do 
let (x, y) = totalXY
in do x’ ← lap 1.0 x 
y’ ← lap 1.0 y 
size’ ← lap 1.0 size 
return (x’/size’, y’/size’) 

totalCoords pts =
let ptxs = bmap fst pts 
ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts =  bsum 1.0 (bmap
(\pt → 1) pts) 
step c1 c2 c3 pts = 

let [p1, p2, p3] = 
bpartition 3 (assign c1 c2 c3) 
pts p1TotalXY = totalCoords p1
p1Size = countPoints p1
p2TotalXY = totalCoords p2 
p2Size = countPoints p2 
p3TotalXY = totalCoords p3 
p3Size = countPoints p3 

in do 
c1’ ← noise p1TotalXY p1Size 
c2’ ← noise p2TotalXY p2Size 
c3’ ← noise p3TotalXY p3Size
num_iter++ 

return (c1’, c2’, c3’) 

while (num_iter < total_iters):

Data can only pass from red to orange by aggregation (via bsum)

aggregate variables!

17



K-Means Example
assign c1 c2 c3 pt = 

let d1 = sqdist c1 pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt
in if d1<d2 and d1<d3 then 0 else 
if d2<d1 and d2<d3 then 1 else 2 

noise totalXY size = do 
let (x, y) = totalXY
in do x’ ← lap 1.0 x
y’ ← lap 1.0 y
size’ ← lap 1.0 size 
return (x’/size’, y’/size’) 

totalCoords pts =
let ptxs = bmap fst pts 
ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts =  bsum 1.0 (bmap
(\pt → 1) pts) 
step c1 c2 c3 pts = 

let [p1, p2, p3] = 
bpartition 3 (assign c1 c2 c3) 
pts p1TotalXY = totalCoords p1
p1Size = countPoints p1
p2TotalXY = totalCoords p2 
p2Size = countPoints p2 
p3TotalXY = totalCoords p3 
p3Size = countPoints p3 

in do 
c1’ ← noise p1TotalXY p1Size 
c2’ ← noise p2TotalXY p2Size 
c3’ ← noise p3TotalXY p3Size
num_iter++ 

return (c1’, c2’, c3’) 

while (num_iter < total_iters):

Data can only pass from red to orange by aggregation (via bsum)

aggregate variables!

18



K-Means Example
assign c1 c2 c3 pt = 

let d1 = sqdist c1 pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt
in if d1<d2 and d1<d3 then 0 else 
if d2<d1 and d2<d3 then 1 else 2 

noise totalXY size = do 
let (x, y) = totalXY
in do x’ ← lap 1.0 x 
y’ ← lap 1.0 y 
size’ ← lap 1.0 size 
return (x’/size’, y’/size’) 

totalCoords pts =
let ptxs = bmap fst pts 
ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts =  bsum 1.0 (bmap
(\pt → 1) pts) 
step c1 c2 c3 pts = 

let [p1, p2, p3] = 
bpartition 3 (assign c1 c2 c3) 
pts p1TotalXY = totalCoords p1
p1Size = countPoints p1
p2TotalXY = totalCoords p2 
p2Size = countPoints p2 
p3TotalXY = totalCoords p3 
p3Size = countPoints p3 

in do 
c1’ ← noise p1TotalXY p1Size 
c2’ ← noise p2TotalXY p2Size 
c3’ ← noise p3TotalXY p3Size
num_iter++ 

return (c1’, c2’, c3’) 

while (num_iter < total_iters):

Aggregate data can only pass from orange to green by noising

19



K-Means Example
assign c1 c2 c3 pt = 

let d1 = sqdist c1 pt
d2 = sqdist c2 pt
d3 = sqdist c3 pt
in if d1<d2 and d1<d3 then 0 else 
if d2<d1 and d2<d3 then 1 else 2 

noise totalXY size = do 
let (x, y) = totalXY
in do x’ ← lap 1.0 x 
y’ ← lap 1.0 y 
size’ ← lap 1.0 size 
return (x’/size’, y’/size’) 

totalCoords pts =
let ptxs = bmap fst pts 
ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts =  bsum 1.0 (bmap
(\pt → 1) pts) 
step c1 c2 c3 pts = 

let [p1, p2, p3] = 
bpartition 3 (assign c1 c2 c3) 
pts p1TotalXY = totalCoords p1
p1Size = countPoints p1
p2TotalXY = totalCoords p2 
p2Size = countPoints p2 
p3TotalXY = totalCoords p3 
p3Size = countPoints p3 

in do 
c1’ ← noise p1TotalXY p1Size 
c2’ ← noise p2TotalXY p2Size 
c3’ ← noise p3TotalXY p3Size
num_iter++ 

return (c1’, c2’, c3’) 

while (num_iter < total_iters):

Aggregate data can only pass from orange to green by noising

Can broadcast new centers in the clear!

20



Outline (Rest of talk)

• High-Level
• Scenario
• Challenges
• Insight
• Orchard Workflow

• Orchard Details
• Threat Model
• Orchard Map
• Orchard Walk-Through
• Optimizations
• Defense against Malicious Users

• Evaluation

21



Optimizations

22

noise totalXY size = do 
let (x, y) = totalXY
in do x’ ← lap 1.0 x 
y’ ← lap 1.0 y 
size’ ← lap 1.0 size 
return (x’/size’, y’/size’)

totalCoords pts =
let ptxs = bmap fst pts 
ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts = bsum 1.0 (bmap (\pt → 1) pts) 



Optimizations x1+x2

x1 x2

X3+x4

x3 x4

y1+y2

y1 y2

y3+y4

y3 y4

s1+s2

s1 s2

s3+s4

s3 s4

x1+x2+x3+x4

y1+y2+y3+y4

s1+s2+s3+s4

Each one of these bsum operations (naively) 
requires a complete round of Honeycrisp!

noise totalXY size = do 
let (x, y) = totalXY
in do x’ ← lap 1.0 x 
y’ ← lap 1.0 y 
size’ ← lap 1.0 size 
return (x’/size’, y’/size’)

totalCoords pts =
let ptxs = bmap fst pts 
ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts = bsum 1.0 (bmap (\pt → 1) pts) 

3 variables we 
need to aggregate 
and add noise to!

Aggregating ‘x’ across all users

Aggregating ‘y’ across all users

Aggregating ‘size’ across all users23



Optimizations
We can pack many ciphertexts into one vector and only aggregate once!

24

x1+x2

x1 x2

X3+x4

x3 x4

y1+y2

y1 y2

y3+y4

y3 y4

s1+s2

s1 s2

s3+s4

s3 s4

x1+x2+x3+x4 y1+y2+y3+y4 s1+s2+s3+s4

x1 y1 s1



Optimizations

x1 y1 s1

x1+x2 y1+y2 s1+s2

x2 y2 ys2 x3 y3 s3 x4 y4 s4

x3+x4 y3+y4 s3+s4

x1+x2
+

x3+x4

y1+y2
+

y3+y4

s1+s2
+

s3+s4

We can pack many ciphertexts into one vector and only aggregate once!

The transformation fuses BMCS calls that do not depend on each other – full details in paper!
25



Robustness

• What to do about malicious users?
• In Honeycrisp, we already use ZK proofs to ensure proper encryption 
• In Orchard, multiple rounds introduce a new (and powerful!) attack vector

• Goal: malicious users should not be able to significantly distort the answers 

• Example:
• Submit a (false!) update to shift facility center to malicious target

26



Robustness

3 rounds, 2 clusters

27



Robustness

Initial (random) clusters

28



Robustness

Clusters after round 1 

29



Robustness

Clusters after round 2 – minor updates 

30



Robustness

Clusters after round 2 

Wants to move 
cluster to California

31



Robustness

Clusters after round 2 
Positions themselves 
in different location

32



Robustness

Clusters after round 3 
Positions themselves 
in different location

33



Robustness
Novel Defense: Use commitments & zero-knowledge proofs to 

ensure that the data each user uploads is consistent

34

X



Evaluation

Questions we wanted to answer in the paper:

• How many private queries can Orchard support? 
• How well do Orchard’s optimizations work? 
• How effective are Orchard’s defenses against malicious clients?
• What are the costs of Orchard? 

35

Full results in paper!



Evaluation
Query Orchard Support

ID3

K-means

Perceptron

PCA

Logistic Regression

Naive Bayes

Neural Network

Histogram

K-median

Query Orchard Support

CDF

Range queries

Bloom filters

Count Mean Sketch

Sparse Vector

DStress

PATE

Iterative Database 
Construction

17 queries from literature survey

36



Evaluation
Query Orchard Support

ID3 X

K-means X

Perceptron X

PCA X

Logistic Regression X

Naive Bayes X

Neural Network X

Histogram X

K-median X

Query Orchard Support

CDF X

Range queries X

Bloom filters X

Count Mean Sketch ✓
Sparse Vector X

DStress X

PATE X

Iterative Database 
Construction X

Honeycrisp

37



Evaluation
Query Orchard Support

ID3 ✓
K-means ✓
Perceptron ✓
PCA ✓
Logistic Regression ✓
Naive Bayes ✓
Neural Network ✓
Histogram ✓
K-median ✓

Orchard can answer 14/17 queries we looked at!

Query Orchard Support

CDF ✓
Range queries ✓
Bloom filters ✓
Count Mean Sketch ✓
Sparse Vector ✓
DStress X

PATE X

Iterative Database 
Construction X

38



Evaluation

Query # Naïve Rounds Optimized

ID3

K-means

Perceptron

PCA

Logistic Regression

Naive Bayes

Neural Network

Histogram

K-median

Query # Naïve Rounds Optimized

CDF

Range queries

Bloom filters

Count Mean Sketch

Sparse Vector

Measuring total number of BMCS calls
(with and without our optimizations)

39



Evaluation

Query # Naïve Rounds Optimized

ID3 2𝑚𝑑
K-means 3𝑚
Perceptron 2𝑚𝑑
PCA 𝑑! + 𝑑
Logistic Regression 𝑑 + 1
Naive Bayes 2𝑑
Neural Network 2𝑚(𝑑 + 1)
Histogram 𝑏
K-median 3𝑚

Query # Naïve Rounds Optimized

CDF 𝑏
Range queries 𝑏
Bloom filters 𝑑
Count Mean Sketch 𝑑
Sparse Vector 1

Measuring total number of BMCS calls
(with and without our optimizations)

40



Evaluation

Query # Naïve Rounds Optimized

ID3 2𝑚𝑑 𝑚 + 1
K-means 3𝑚 𝑚 + 1
Perceptron 2𝑚𝑑 𝑚 + 1
PCA 𝑑! + 𝑑 1
Logistic Regression 𝑑 + 1 2
Naive Bayes 2𝑑 2
Neural Network 2𝑚(𝑑 + 1) 𝑚 + 1
Histogram 𝑏 1
K-median 3𝑚 𝑚

Optimizations save many total rounds!

Query # Naïve Rounds Optimized

CDF 𝑏 1
Range queries 𝑏 1
Bloom filters 𝑑 1
Count Mean Sketch 𝑑 1
Sparse Vector 1 1

Measuring total number of BMCS calls
(with and without our optimizations)

41



Di
st

an
ce

 fr
om

 M
al

ic
io

us
 T

ar
ge

t (
m

ile
s)

Simulation of attack with 10K total users

Attack success 
threshold

42

Evaluation - Robustness



Di
st

an
ce

 fr
om

 M
al

ic
io

us
 T

ar
ge

t (
m

ile
s)

Simulation of attack with 10K total users

• With LDP or GDP, a single 'bad apple' can spoil the whole result
43

Evaluation - Robustness



Di
st

an
ce

 fr
om

 M
al

ic
io

us
 T

ar
ge

t (
m

ile
s)

Simulation of attack with 10K total users

• With LDP or GDP, a single 'bad apple' can spoil the whole result
• With Orchard, the malicious users would have to be in the majority!

44

Evaluation - Robustness



If elected to committee, requires substantially more
Most users’ costs (>99.99%) are low!

0.2

1

5

25

Hcrisp CMS SV Perc* ID3* kmean PCA NN* kmedianbloom NB* LogReg* Hist CDF Range

Tr
af
�c

(M
B)

Algorithm
(a)

Sum Verif.
Ciphertexts

Range Proofs

1

5

25

Hcrisp CMS SV Perc* ID3* kmean PCA NN* kmedianbloom NB* LogReg* Hist CDF Range

C
om

pu
ta
tio
n
(m
in
)

Algorithm
(b)

Encryption
Proof gen.

Other

Cost varies a bit with
query, but is generally 
fairly low

Most users: 
• send less than 25MB of 

traffic
• spend up to 25 

minutes of 
computation time

Costs for all (non-committee) participants

45

Hcrisp
CM

S

SV

Perc

ID3

K-m
eans

PCA

NN

K-M
edian

Bloom

NB

LogReg
Hist

CDF

Range

Algorithm

Hcrisp
CM

S

SV

Perc

ID3

K-m
eans

PCA

NN

K-M
edian

Bloom

NB

LogReg
Hist

CDF

Range

Algorithm

Evaluation - Users



Evaluation - Aggregator

0.1

1

10

100

1000

10000

1.3*107 1.3*108 1.3*109 1.3*1010

C
om

pu
ta
tio
n
(c
or
es
)

Number of Participants
(b)

1 round
3 rounds
20 rounds

0.1

1

10

100
1000

10000

100000
1x106

1.3*107 1.3*108 1.3*109 1.3*1010

Tr
af
�c

(T
B
se
nt
)

Number of Participants
(a)

1 round
3 rounds
20 rounds

• Both bandwidth and computation scale linearly with 
number of rounds and participants

Absolute costs are within reach of a data center

• MAX costs: 
• 892 cores, or 74 machines with two CPUs each. 
• 13,180 TB à 10 MB per user  (~5 average 

webpages!)
• Much of this can be offloaded to CDNs

46



Summary

• Goal: federated analytics at massive scale, with strong privacy guarantees

• Challenges:
• Many different queries, no general-purpose solution
• Small groups of malicious users can manipulate results

• Idea: transform queries to expose internal sums
• Can be done for most queries we found
• Enables Honeycrisp-style aggregation (w/ some generalizations)
• ZKP’s can be used to prevent manipulation

• Our solution: Orchard
• Automatic query transformation, with optimizations
• Scales almost linearly, to billions of users
• Good accuracy, even if some users are malicious

47

Contact: edoroth@seas.upenn.edu


