

CrossFS: A Cross-layered Direct-Access File System

Yujie Ren¹, Changwoo Min², and Sudarsun Kannan¹

¹ Rutgers University; ² Virginia Tech

Modern File System Limitations

- High software overheads \bullet
 - System call overheads compounded with layers of I/O stack
- Lack support for leveraging host and device-level compute \bullet
 - Host CPUs are fast, but low utilization for processing I/O requests
 - Device CPUs are under-utilized
- Coarse-grained locks leading to non-scalable concurrent access
 - Inode-level lock limits concurrent access for shared file
 - Even updates to non-overlapping range of blocks are serialized

Our Solution: CrossFS

- Disaggregates file system across user-level, OS, and firmware Divides work across host-level and device-level compute
- Applications directly access the firmware file system Avoids system call overheads for data and control plane
- Designs fine-grained file descriptor-level concurrency Replaces coarse-grained inode-level lock in current file systems
- Achieves Up to 4x higher throughput!

Outline

Background

- Motivation
- Design
- Evaluation
- Conclusion

4

I/O Software Overheads

Reducing file system software cost is critical

I/O Software Overheads

: Kernel Trap : OS Overhead : OVERHEAD : OVERHEAD

Application I/O Behavior

- Small random I/O dominates access patterns \bullet
 - Desktop applications (e.g., SQLite)
 - Server applications (e.g., RocksDB, SQL databases)
- Concurrent file access is critical for I/O scalability \bullet
 - Threads read/write to shared file concurrently (e.g., RocksDB, MySQL)
 - Processes share files (e.g., HPC applications)
- Crash consistency is important •
 - Application-level crash consistency is difficult
 - Application relies on file system for crash consistency

State-of-the-art Designs

User-FS

Kernel-FS

: data-plane ops

Firmware-FS

DevFS (FAST' 18)

Insider (ATC' 19)

Outline

- Background
- Motivation
- Design
- Evaluation
- Conclusion

10

File System Approaches Summary

Cross-FS	CrossFS			
Firmware-FS	DevFS			
User-FS	SplitFS			
Kernel-FS	ext4-DAX			
Classes	File System	Direct-Access	Utilize Host CPU	Utilize Storage CPU

More file systems discussed in the paper

Two threads write to disjoint blocks of a shared file

Two threads write to disjoint blocks of a shared file

Two threads write to disjoint blocks of a shared file

Two threads write to disjoint blocks of a shared file

Two threads write to disjoint blocks of a shared file

Two threads write to disjoint blocks of a shared file

Concurrent reader and writer threads randomly accessing a shared file

X-axis shows # of reader threads Y-axis shows the aggregated throughput

Outline

- Background
- Motivation
- Design
- Evaluation
- Conclusion

19

Our Solution: CrossFS

A cross-layered direct-access file system

- Disaggregated FS components to exploit host and device CPUs
- OS-bypass for data-plane and control-plane operations
- File descriptor-based fine-grained concurrency control
- Firmware-level file descriptor's I/O queue scheduling
- Cross-layered crash consistency

CrossFS Components

✓ Support POSIX semantics ✓ Add I/O commands to I/O queue ✓ Handle Concurrency control

✓ Handle FS mount and setup✓ Help with security

✓ Handle I/O request scheduling ✓ Manage Data and metadata ✓ Support Journaling ✓ Perform Permission checks

: control-plane ops

CrossFS I/O Processing Example

Convert POSIX system call to FirmFS IO commands

Insert I/O commands to I/O queue (cmd-queue + data buffer)

FirmFS fetches I/O commands from command queue

FirmFS performs permission check before processing

- Inode-level rw-lock is the bottleneck \bullet
 - Even non-overlapping reads and writes are serialized
- Non-overlapping writes could be parallelized lacksquare
 - Different threads could open different file descriptors for a shared file

```
Thread I
                                       Thread 2
fdl = open("shared file", rw);
pwrite (fd1, buf, sz=4096, off=0);
```

- File descriptor is a natural concurrency abstraction \bullet
 - Independent file descriptors for a shared file
 - Map each file descriptor to an independent hardware I/O queue
 - 64K I/O queues in modern storage

fd2 = open("shared file", rw); pwrite(fd2, buf, sz=4096, off=8192);

Align each file descriptor to a dedicated I/O queue (**FD-queue**)

Thread I

fdl = open("shared file", rw); pwrite(fd1, buf, sz = 4096, off = 0); Thread 2

fd2 = open("shared file", rw);

LibFS

FirmFS

pwrite(fd2, buf, sz = 4096, off =8192);

Kernel component

Align each file descriptor to a dedicated I/O queue (**FD-queue**)

Thread I

 \rightarrow fdI = open("shared file", rw); pwrite(fd1, buf, sz = 4096, off = 0); Thread 2

fd2 = open("shared file", rw);

LibFS

FirmFS

pwrite(fd2, buf, sz = 4096, off =8192);

Kernel component

Align each file descriptor to a dedicated I/O queue (**FD-queue**)

Thread I

Thread 2

fd2 = open("shared_file", rw);

LibFS

FirmFS

pwrite(fd2, buf, sz = 4096, off =8192);

Kernel component

Align each file descriptor to a dedicated I/O queue (**FD-queue**)

Thread I

fdl = open("shared file", rw); pwrite(fd1, buf, sz = 4096, off = 0); Thread 2

 \rightarrow fd2 = open("shared file", rw);

LibFS

FirmFS

pwrite(fd2, buf, sz = 4096, off =8192);

Kernel component

Align each file descriptor to a dedicated I/O queue (**FD-queue**)

Thread I

fdl = open("shared file", rw);

 \rightarrow pwrite(fdI, buf, sz = 4096, off = 0);

Thread 2

fd2 = open("shared file", rw);

LibFS

pwrite(fd2, buf, sz = 4096, off =8192);

Kernel component

Align each file descriptor to a dedicated I/O queue (**FD-queue**)

Thread I

fdl = open("shared file", rw); pwrite(fd1, buf, sz = 4096, off = 0); Thread 2

fd2 = open("shared file", rw);

LibFS

→ pwrite(fd2, buf, sz = 4096, off =8192);

Kernel component

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread I

fdl = open("shared file", rw); pwrite(fd1, buf, sz = 4096, off = 0); Thread 2

fd2 = open("shared file", rw);

LibFS

FirmFS

pwrite(fd2, buf, sz = 4096, off =8192);

Kernel component

What about overlapping concurrent writes?

Thread I

fdl = open("shared file", rw); pwrite(fd1, buf, sz = 4096, off = 0); Thread 2

fd2 = open("shared_file", rw);

LibFS

FirmFS

pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

What about overlapping concurrent writes?

Thread I

fdl = open("shared file", rw);

 \rightarrow pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2

fd2 = open("shared_file", rw);

LibFS

FirmFS

→ pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

What about overlapping concurrent writes?

Thread I

fdl = open("shared file", rw);

 \rightarrow pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2

fd2 = open("shared_file", rw);

LibFS

FirmFS

\rightarrow pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

What about overlapping concurrent writes?

Thread I

fdl = open("shared file", rw);

→ pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2

fd2 = open("shared_file", rw);

LibFS

\rightarrow pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Resolving overlapping writes – Interval tree data structure

Efficient lookup of overlapping blocks requests across FD-queues

CrossFS uses interval tree to store I/O block ranges for in-flight requests

Resolving conflict writes – Interval tree structure
Resolving conflict writes – Interval tree structure

Thread I

fdl = open("shared file", rw);

Opl: pwrite(fdl, buf, sz=4096, off=0)

Thread 2

fd2 = open("shared_file", rw); **Op2**: pwrite(fd2, buf, sz=4096, off = 4096) **Op3**: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); → Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); → Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

fd2 = open("shared_file", rw); **Op2**: pwrite(fd2, buf, sz=4096, off = 4096)

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

fd2 = open("shared_file", rw); **Op2**: pwrite(fd2, buf, sz=4096, off = 4096)

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

fd2 = open("shared file", rw); **Op2**: pwrite(fd2, buf, sz=4096, off = 4096)

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

fd2 = open("shared file", rw); **Op2**: pwrite(fd2, buf, sz=4096, off = 4096)

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

fd2 = open("shared_file", rw); **Op2**: pwrite(fd2, buf, sz=4096, off = 4096)

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Resolving conflict writes – Interval tree structure

Thread 2 fd2 = open("shared_file", rw); Op2: pwrite(fd2, buf, sz=4096, off = 4096) Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

Kernel component

Unified I/O Scheduler Framework

- Need to dispatch and schedule FD-queues efficiently
 - Thousands of FD-queues for large scale applications
 - Few in-storage CPUs (four in our study)

- Insight: Unified file system + firmware I/O scheduler
 - Map FD-queues to FirmFS processing threads (i.e., device-level CPUs)
 - Separate scheduling mechanism from scheduling policy

I/O Scheduling Policies

Round Robin \bullet

- Each device CPU dispatches request from FD-queues
- Provides fairness but delays blocking operations (e.g., read, fsync)
- Urgent Aware Scheduling \bullet
 - Prioritize blocking requests
 - Avoid write request starvation by limiting write delays
- More sophisticated policies future work!

Cross-Layered Crash Consistency

- FD-queue and data buffer crash consistency \bullet
 - NVM provides persistence
 - CLWB and memory fence to provide crash consistency
- FirmFS crash consistency \bullet
 - Default meta-data journaling like current file systems
 - Add offset of data buffer in NVM to the journal entry
 - Get data journaling benefits at the cost of meta-data journaling

Please see our paper for more details!

Outline

- Background
- Motivation
- Design
- Evaluation
- Conclusion

69

Experimental Setup

- Hardware platform lacksquare
 - Dual-socket 64-core Xeon Scalable CPU @ 2.6GHz
 - 512GB Intel Optane DC NVM
- Emulate firmware-level FS (no programmable storage H/W)
 - Reserve dedicated device threads for handling I/O requests
 - Add PCIe latency for all I/O operations
 - Reduce CPU frequency for device CPUs
- State-of-the-art file systems •
 - ext4-DAX, NOVA [FAST' 16] (Kernel-level file system)
 - Strata [SOSP '17], SplitFS [SOSP' 19] (User-level file system)
 - **DevFS** [FAST' 18] (Firmware-level file system)

Evaluation Goals

Concurrent accesses scaling when sharing files?

Reducing I/O software cost?

• I/O scaling without file sharing across threads?

• Real-world application goals?

Microbenchmark – Read Scalability

Multiple readers and 4 writer threads accessing a 12GB shared file

- X-axis: # of concurrent readers \bullet
- Y-axis: Aggregated readers' throughput \bullet Readers do not have to wait for writers

Microbenchmark – Write Scalability

Multiple readers and 4 writer threads accessing a 12GB shared file

- X-axis: # of concurrent readers
- Y-axis: Aggregated writers' throughput ulletNon-overlapping writes dispatched in parallel

Evaluation Goals

Concurrent accesses scaling when sharing files?

• Reducing I/O software cost?

• I/O scaling without file sharing across threads?

• Real-world application goals?

CrossFS Performance Breakdown

Multi-reader and multi-writer threads accessing a 12GB shared file

- X-axis: 16 concurrent reader threads, 4 concurrent writer threads
- Y-axis: Aggregated writers' throughput

Evaluation Goals

Concurrent accesses scaling when sharing files?

Reducing I/O software cost?

I/O scaling without file sharing across threads? •

• Real-world application goals?

Macro-benchmark: Filebench

Fileserver (write-heavy workload)

- X-axis: # of filebench threads
- Y-axis: benchmark throughput

Macro-benchmark: Filebench

Fileserver (write-heavy workload)

CrossFS writes to NVM buffers first and then asynchronously dispatches request, hence achieves high throughput

Evaluation Goals

Concurrent accesses scaling when sharing files?

Reducing I/O software cost?

• I/O scaling without file sharing across threads?

Real-world application goals? •

Application - RocksDB

DBbench *fillrandom* (random write) benchmark

- X-axis: # of DBbench threads
- Y-axis: *fillrandom* benchmark throughput

Application - RocksDB

DBbench *fillrandom* (random write) benchmark

- RocksDB threads append kv-pairs to shared log files.
- CrossFS eliminates inode-level lock overheads

og files. s

Summary

- Motivation
 - Software overhead matters and providing direct-access is critical
 - Poor coarse-grained concurrency in current file systems
- Solution Cross-layered file system
 - Disaggregation of file system components across S/W and firmware
 - File descriptor-level parallelism replacing inode-level locking bottleneck
 - File descriptor scheduling and cross-layered crash consistency
- Evaluation
 - CrossFS shows up to 4x micro-benchmark performance gains
 - CrossFS shows up to 2x application performance gains

cess is critical stems

/W and firmware el locking bottleneck consistency

nance gains gains

Conclusion

- Storage hardware (with compute capability) has reached the microsecond era ${\color{black}\bullet}$
- Providing direct I/O and utilizing host and storage-level compute is critical • - Our approach: Cross-layered storage file system design
- Fine grained concurrency control is important for I/O scalability \bullet - Our approach: File-descriptor concurrency control
- Future work: \bullet

- H/W integration, support for sophisticated scheduling policies, other file system operations (e.g., mmap())

Thanks!

yujie.ren@rutgers.edu

Questions?

Backup Slides

85

Macro-benchmark: Filebench

Varmail (metadata-heavy workloads)

- X-axis: # of filebench threads
- Y-axis: benchmark throughput

CrossFS eliminate system call overheads

Application - RocksDB

DBbench *readrandom* benchmark

- X-axis: # of DBbench threads
- Y-axis: *readrandom* benchmark throughput CrossFS eliminate system call overheads