
CrossFS: A Cross-layered Direct-Access
File System

Yujie Ren1, Changwoo Min2, and Sudarsun Kannan1

1 Rutgers University; 2 Virginia Tech

Modern File System Limitations

2

• High software overheads
- System call overheads compounded with layers of I/O stack

• Lack support for leveraging host and device-level compute
- Host CPUs are fast, but low utilization for processing I/O requests
- Device CPUs are under-utilized

• Coarse-grained locks leading to non-scalable concurrent access
- Inode-level lock limits concurrent access for shared file
- Even updates to non-overlapping range of blocks are serialized

Our Solution: CrossFS

3

• Applications directly access the firmware file system
Avoids system call overheads for data and control plane

• Disaggregates file system across user-level, OS, and firmware
Divides work across host-level and device-level compute

• Achieves Up to 4x higher throughput!

• Designs fine-grained file descriptor-level concurrency
Replaces coarse-grained inode-level lock in current file systems

• Background
• Motivation
• Design
• Evaluation
• Conclusion

4

Outline

Modern Storage Devices

5

DRAM

NVM

Ultra-fast SSD

HDD

Latency B/W $/GB

300 ns 10 GB/s 4.0

40 𝜇s 2 GB/s 0.25

5 ms 2.6 MB/s 0.02

Volatile

None-Volatile

In-storage
compute is
powerful

I/O Software Overheads

6

OS Kernel

Page Cache

Block I/O Layer

Device Driver

VFS Layer

Actual FS

Application

: Kernel Trap

: OS Overhead

PMFS ext4

write(file1)

1 - 4𝝁𝒔

Reducing file system
software cost is

critical

I/O Software Overheads

7

OS Kernel

Page Cache

Block I/O Layer

Device Driver

VFS Layer

Actual FS

Application

: Kernel Trap

: OS Overhead

PMFS ext4

write(file1)

1 - 4𝝁𝒔

Increasing thread-
level and process-

level concurrency is
important!

Application

write(file1)

Application I/O Behavior

8

• Small random I/O dominates access patterns
- Desktop applications (e.g., SQLite)
- Server applications (e.g., RocksDB, SQL databases)

• Concurrent file access is critical for I/O scalability
- Threads read/write to shared file concurrently (e.g., RocksDB, MySQL)
- Processes share files (e.g., HPC applications)

• Crash consistency is important
- Application-level crash consistency is difficult
- Application relies on file system for crash consistency

9

State-of-the-art Designs

: data-plane ops : control-plane ops

Application

Storage

Kernel-FS

Kernel FS

ext4-DAX
NOVA (FAST’ 16)

User-FS

Application

FS Lib

Trusted FS
Server

Storage

Strata (SOSP’ 17)
SplitFS (SOSP’ 19)

Firmware-FS

Application

FS Lib

Storage

Firmware FS

DevFS (FAST’ 18)
Insider (ATC’ 19)

• Background
• Motivation
• Design
• Evaluation
• Conclusion

10

Outline

11

File System Approaches Summary

Classes File
System

D
ir

ec
t-

A
cc

es
s

U
til

iz
e

H
os

t
C

PU

U
til

iz
e

St
or

ag
e

C
PU

Fi
ne

-g
ra

in
ed

C

on
cu

rr
en

cy

Kernel-FS ext4-DAX

User-FS SplitFS

Firmware-FS DevFS

Cross-FS CrossFS

Ideal for
achieving higher

performance

More file systems discussed in the paper

Satisfy

Not satisfy

Partially satisfy

12

File System

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis

App Thread 1

write(shared_file, Block 2)

App Thread 2

write(shared_file, Block N)

13

File System

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis

App Thread 1

write(shared_file, Block 2)

App Thread 2

write(shared_file, Block N)

14

File System

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis

App Thread 1

write(shared_file, Block 2)

App Thread 2

write(shared_file, Block N)

15

File System

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis

App Thread 1

write(shared_file, Block 2)

App Thread 2

write(shared_file, Block N)

16

File System

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis

App Thread 1

write(shared_file, Block 2)

App Thread 2

write(shared_file, Block N)

17

File System
Coarse-gained per-

inode locks for
disjoint blocks!

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis

App Thread 1

write(shared_file, Block 2)

App Thread 2

write(shared_file, Block N)

18

0

2

4

6

1 4 8 16

T
hr

ou
gh

pu
t

(G
B/

s)

of reader threads (with 4 writer threads)

ext4-DAX (Kernel-FS)
Strata (User-FS)
DevFS (Firmware-FS)
CrossFS

X-axis shows # of reader threads
Y-axis shows the aggregated throughput

Concurrent reader and writer threads randomly accessing a shared file

Concurrency Limitations - Analysis

Inode-level
locking is the
bottleneck!

• Background
• Motivation
• Design
• Evaluation
• Conclusion

19

Outline

Our Solution: CrossFS

20

• Disaggregated FS components to exploit host and device CPUs

• File descriptor-based fine-grained concurrency control

• Cross-layered crash consistency

A cross-layered direct-access file system

• Firmware-level file descriptor’s I/O queue scheduling

• OS-bypass for data-plane and control-plane operations

21

ü Support POSIX semantics
ü Add I/O commands to I/O queue
ü Handle Concurrency control

Application

Storage

Kernel
Component

LibFS

FirmFS

CrossFS Components

ü Handle I/O request scheduling
ü Manage Data and metadata
ü Support Journaling
ü Perform Permission checks

ü Handle FS mount and setup
ü Help with security

: data-plane ops : control-plane ops

I/O queues

Host CPUs

Device CPUs

22

CrossFS I/O Processing Example
Application
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

LibFS

FirmFS

Kernel component

Create I/O command-
queue in DMA-able
NVM region

Storage

Convert POSIX system call to
FirmFS IO commands

Insert I/O commands to I/O
queue (cmd-queue + data buffer)

FirmFS fetches I/O commands
from command queue

FirmFS performs permission
check before processing

cmd-queue Data Buffer

NVM

Insert
command

Process
command

23

• Inode-level rw-lock is the bottleneck
- Even non-overlapping reads and writes are serialized

• File descriptor is a natural concurrency abstraction
- Independent file descriptors for a shared file
- Map each file descriptor to an independent hardware I/O queue
- 64K I/O queues in modern storage

• Non-overlapping writes could be parallelized
- Different threads could open different file descriptors for a shared file

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz=4096, off=0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz=4096, off=8192);

Fine-grained Concurrency Control

Fine-grained Concurrency Control

24

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off =8192);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

NVM

Fine-grained Concurrency Control

25

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off =8192);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

NVM

Fine-grained Concurrency Control

26

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off =8192);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

fd1 FD-queue

NVM

fd2 FD-queue

Fine-grained Concurrency Control

27

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off =8192);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

fd1 FD-queue

NVM

fd2 FD-queue

Fine-grained Concurrency Control

28

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off =8192);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

fd1 FD-queue

Op1

NVM

fd2 FD-queue

Fine-grained Concurrency Control

29

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off =8192);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

fd1 FD-queue

Op1 Op2

NVM

fd2 FD-queue

Fine-grained Concurrency Control

30

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off =8192);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

Concurrent writes
on a shared file

fd1 FD-queue

Op1 Op2

NVM

Fine-grained Concurrency Control

31

What about overlapping concurrent writes?

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

fd1 FD-queue fd2 FD-queue

NVM

Fine-grained Concurrency Control

32

What about overlapping concurrent writes?

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

fd1 FD-queue fd2 FD-queue

NVM

Fine-grained Concurrency Control

33

What about overlapping concurrent writes?

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

fd1 FD-queue fd2 FD-queue

NVM

Op1 Op2

Fine-grained Concurrency Control

34

What about overlapping concurrent writes?

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

FirmFS

Kernel component

Create FD-queue in
DMA-able NVM region

Which request to
dispatch first?

fd1 FD-queue fd2 FD-queue

NVM

Op1 Op2

Fine-grained Concurrency Control

35

Resolving overlapping writes – Interval tree data structure

[15, 20]
40

[10, 30]
30

[17, 19]
40

[5, 20]
20

[12, 15]
15

[30, 40]
40

CrossFS uses interval tree to store I/O block ranges for in-flight requests

Low high

Max in
subtree

Efficient lookup of overlapping blocks requests across FD-queues

Fine-grained Concurrency Control

36

Resolving conflict writes – Interval tree structure

Fine-grained Concurrency Control

37

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

LibFS

fd1 FD-queue fd2 FD-queue

NVM

Fine-grained Concurrency Control

38

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM

Fine-grained Concurrency Control

39

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM

Fine-grained Concurrency Control

40

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock
LibFS

fd1 FD-queue fd2 FD-queue

NVM

Fine-grained Concurrency Control

41

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock
LibFS

fd1 FD-queue fd2 FD-queue

NVM

Fine-grained Concurrency Control

42

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock

Interval tree unlock

LibFS

fd1 FD-queue fd2 FD-queue

NVM

Fine-grained Concurrency Control

43

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock

Interval tree unlock

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1

Fine-grained Concurrency Control

44

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1

Fine-grained Concurrency Control

45

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1

Fine-grained Concurrency Control

46

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1

Fine-grained Concurrency Control

47

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1

Non-overlapping writes

Fine-grained Concurrency Control

48

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock
LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1

Non-overlapping writes

Fine-grained Concurrency Control

49

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock
LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1

Non-overlapping writes

Fine-grained Concurrency Control

50

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock

Interval tree unlock

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1

Non-overlapping writes

Fine-grained Concurrency Control

51

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock

Interval tree unlock

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Non-overlapping writes

Fine-grained Concurrency Control

52

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Fine-grained Concurrency Control

53

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Fine-grained Concurrency Control

54

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Fine-grained Concurrency Control

55

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Overlapping writes

Fine-grained Concurrency Control

56

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock
LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Overlapping writes

Fine-grained Concurrency Control

57

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock
LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Overlapping writes

Fine-grained Concurrency Control

58

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock

Interval tree unlock

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Overlapping writes

Fine-grained Concurrency Control

59

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock

Interval tree unlock

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Op3

Overlapping writes

Fine-grained Concurrency Control

60

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Op3

Fine-grained Concurrency Control

61

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Op3

Fine-grained Concurrency Control

62

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Op3

Order Op3 in the same
queue as Op1 and make

Op1 no-op

Fine-grained Concurrency Control

63

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op2

Op3

Order Op3 in the same
queue as Op1 and make

Op1 no-op

Fine-grained Concurrency Control

64

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op2

Op3

Order Op3 in the same
queue as Op1 and make

Op1 no-op

Lock is only required during
interval tree lookup, insert

and delete

Fine-grained Concurrency Control

65

Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op2

Op3

Order Op3 in the same
queue as Op1 and make

Op1 no-op

Lock is only required during
interval tree lookup, insert

and delete

CrossFS converts file concurrency control to queue ordering problem
Once requests are ordered, FirmFS dispatches requests from queues in parallel

Unified I/O Scheduler Framework

66

fd1 FD-queue fd2 FD-queue

NVM

fdN FD-queue

Thousands of FD-
queues possible!
…

Device CPU Threads

How to dispatch FD-
queues efficiently?

• Need to dispatch and schedule FD-queues efficiently
- Thousands of FD-queues for large scale applications
- Few in-storage CPUs (four in our study)

• Insight: Unified file system + firmware I/O scheduler
- Map FD-queues to FirmFS processing threads (i.e., device-level CPUs)
- Separate scheduling mechanism from scheduling policy

I/O Scheduling Policies

67

• Round Robin
- Each device CPU dispatches request from FD-queues
- Provides fairness but delays blocking operations (e.g., read, fsync)

• Urgent Aware Scheduling
- Prioritize blocking requests
- Avoid write request starvation by limiting write delays

• More sophisticated policies – future work!

Cross-Layered Crash Consistency

68

• FD-queue and data buffer crash consistency
- NVM provides persistence
- CLWB and memory fence to provide crash consistency

• FirmFS crash consistency
- Default meta-data journaling like current file systems
- Add offset of data buffer in NVM to the journal entry
- Get data journaling benefits at the cost of meta-data journaling

Please see our paper for more details!

• Background
• Motivation
• Design
• Evaluation
• Conclusion

69

Outline

70

Experimental Setup
• Hardware platform

- Dual-socket 64-core Xeon Scalable CPU @ 2.6GHz
- 512GB Intel Optane DC NVM

• Emulate firmware-level FS (no programmable storage H/W)
- Reserve dedicated device threads for handling I/O requests
- Add PCIe latency for all I/O operations
- Reduce CPU frequency for device CPUs

• State-of-the-art file systems
- ext4-DAX, NOVA [FAST’ 16] (Kernel-level file system)
- Strata [SOSP ‘17], SplitFS [SOSP’ 19] (User-level file system)
- DevFS [FAST’ 18] (Firmware-level file system)

71

Evaluation Goals

• Concurrent accesses scaling when sharing files?

• Reducing I/O software cost?

• Real-world application goals?

• I/O scaling without file sharing across threads?

72

Microbenchmark – Read Scalability
Multiple readers and 4 writer threads accessing a 12GB shared file

• X-axis: # of concurrent readers
• Y-axis: Aggregated readers’ throughput

0

2000

4000

6000

1 4 8 16

T
hr

ou
gh

pu
t

(M
B/

s)

of reader threads (w/ 4 writer threads)

ext4-DAX NOVA

DevFS SplitFS

Strata CrossFS

Readers do not have to wait for writers

4.87x

73

Microbenchmark – Write Scalability
Multiple readers and 4 writer threads accessing a 12GB shared file

• X-axis: # of concurrent readers
• Y-axis: Aggregated writers’ throughput

0

1000

2000

3000

1 4 8 16

T
hr

ou
gh

pu
t

(M
B/

s)

of reader threads (w/ 4 writer threads)

ext4-DAX NOVA DevFS

SplitFS Strata CrossFS

3.41x

Non-overlapping writes dispatched in parallel

74

Evaluation Goals

• Concurrent accesses scaling when sharing files?

• Reducing I/O software cost?

• Real-world application goals?

• I/O scaling without file sharing across threads?

75

CrossFS Performance Breakdown
Multi-reader and multi-writer threads accessing a 12GB shared file

0

2000

4000

6000

Readers Writers

T
hr

ou
gh

pu
t

(M
B/

s)

CrossFS-ioctl-lock

Scalability Design

Kernel Bypass

Urgent-aware Scheduler

• X-axis: 16 concurrent reader threads, 4 concurrent writer threads
• Y-axis: Aggregated writers’ throughput

2.71x

2.51x

76

Evaluation Goals

• Concurrent accesses scaling when sharing files?

• Reducing I/O software cost?

• Real-world application goals?

• I/O scaling without file sharing across threads?

77

Macro-benchmark: Filebench

0

400

800

1200

1 2 4 8 12

T
hr

ou
gh

pu
t

(k
op

s/
s)

of threads

ext4-DAX
NOVA
DevFS
CrossFS

Fileserver (write-heavy workload)

• X-axis: # of filebench threads
• Y-axis: benchmark throughput

78

Macro-benchmark: Filebench

0

400

800

1200

1 2 4 8 12

T
hr

ou
gh

pu
t

(k
op

s/
s)

of threads

ext4-DAX
NOVA
DevFS
CrossFS

Fileserver (write-heavy workload)

CrossFS writes to NVM buffers first and then asynchronously dispatches
request, hence achieves high throughput

2.91x

79

Evaluation Goals

• Concurrent accesses scaling when sharing files?

• Reducing I/O software cost?

• Real-world application goals?

• I/O scaling without file sharing across threads?

80

Application - RocksDB
DBbench fillrandom (random write) benchmark

• X-axis: # of DBbench threads
• Y-axis: fillrandom benchmark throughput

0

100

200

300

400

1 2 4 8 16

T
hr

ou
gh

pu
t

(k
op

s/
s)

of RockDB threads

ext4-DAX NOVA
DevFS CrossFS

81

Application - RocksDB
DBbench fillrandom (random write) benchmark

0

100

200

300

400

1 2 4 8 16

T
hr

ou
gh

pu
t

(k
op

s/
s)

of RockDB threads

ext4-DAX NOVA
DevFS CrossFS

2.27x

- RocksDB threads append kv-pairs to shared log files.
- CrossFS eliminates inode-level lock overheads

82

Summary

• Motivation
- Software overhead matters and providing direct-access is critical
- Poor coarse-grained concurrency in current file systems

• Solution – Cross-layered file system
- Disaggregation of file system components across S/W and firmware
- File descriptor-level parallelism replacing inode-level locking bottleneck
- File descriptor scheduling and cross-layered crash consistency

• Evaluation
- CrossFS shows up to 4x micro-benchmark performance gains
- CrossFS shows up to 2x application performance gains

83

Conclusion

• Storage hardware (with compute capability) has reached the microsecond era

• Providing direct I/O and utilizing host and storage-level compute is critical
- Our approach: Cross-layered storage file system design

• Future work:
- H/W integration, support for sophisticated scheduling policies, other
file system operations (e.g., mmap())

• Fine grained concurrency control is important for I/O scalability
- Our approach: File-descriptor concurrency control

Thanks!

84

Questions?

yujie.ren@rutgers.edu

Backup Slides

85

86

Macro-benchmark: Filebench
Varmail (metadata-heavy workloads)

0

400

800

1200

1 2 4 8 12

T
hr

ou
gh

pu
t

(k
op

s/
s)

of Threads

ext4-DAX
NOVA
DevFS
CrossFS

CrossFS eliminate system call overheads

• X-axis: # of filebench threads
• Y-axis: benchmark throughput

1.36x

87

Application - RocksDB
DBbench readrandom benchmark

• X-axis: # of DBbench threads
• Y-axis: readrandom benchmark throughput

0

700

1400

2100

2800

1 2 4 8 16

T
hr

ou
gh

pu
t

(k
op

s/
s)

of RockDB threads

ext4-DAX
NOVA

DevFS
CrossFS

1.15x

CrossFS eliminate system call overheads

