
CrossFS: A Cross-layered Direct-Access 
File System

Yujie Ren1, Changwoo Min2, and Sudarsun Kannan1

1 Rutgers University; 2 Virginia Tech



Modern File System Limitations
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• High software overheads
- System call overheads compounded with layers of I/O stack

• Lack support for leveraging host and device-level compute
- Host CPUs are fast, but low utilization for processing I/O requests
- Device CPUs are under-utilized 

• Coarse-grained locks leading to non-scalable concurrent access
- Inode-level lock limits concurrent access for shared file
- Even updates to non-overlapping range of blocks are serialized



Our Solution: CrossFS
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• Applications directly access the firmware file system
Avoids system call overheads for data and control plane

• Disaggregates file system across user-level, OS, and firmware
Divides work across host-level and device-level compute

• Achieves Up to 4x higher throughput!

• Designs fine-grained file descriptor-level concurrency
Replaces coarse-grained inode-level lock in current file systems
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Modern Storage Devices
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I/O Software Overheads
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Application I/O Behavior
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• Small random I/O dominates access patterns
- Desktop applications (e.g., SQLite)
- Server applications (e.g., RocksDB, SQL databases)

• Concurrent file access is critical for I/O scalability
- Threads read/write to shared file concurrently (e.g., RocksDB, MySQL)
- Processes share files (e.g., HPC applications)

• Crash consistency is important
- Application-level crash consistency is difficult
- Application relies on file system for crash consistency



9

State-of-the-art Designs

: data-plane ops : control-plane ops

Application

Storage

Kernel-FS

Kernel FS

ext4-DAX
NOVA (FAST’ 16)

User-FS

Application

FS Lib

Trusted FS 
Server

Storage

Strata (SOSP’ 17)
SplitFS (SOSP’ 19)

Firmware-FS

Application

FS Lib

Storage

Firmware FS

DevFS (FAST’ 18)
Insider (ATC’ 19)



• Background
• Motivation
• Design
• Evaluation
• Conclusion

10

Outline



11

File System Approaches Summary
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File System

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis
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write(shared_file, Block N)



13

File System

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis

App Thread 1

write(shared_file, Block 2)

App Thread 2

write(shared_file, Block N)



14

File System

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis

App Thread 1

write(shared_file, Block 2)

App Thread 2

write(shared_file, Block N)



15

File System

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis

App Thread 1

write(shared_file, Block 2)

App Thread 2

write(shared_file, Block N)



16

File System

Shared file
Block 1 Block 2 Block 3 … Block N

inode

Two threads write to disjoint blocks of a shared file

Concurrency Limitations - Analysis

App Thread 1

write(shared_file, Block 2)

App Thread 2

write(shared_file, Block N)



17

File System
Coarse-gained per-

inode locks for 
disjoint blocks!
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Our Solution: CrossFS
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• Disaggregated FS components to exploit host and device CPUs

• File descriptor-based fine-grained concurrency control

• Cross-layered crash consistency

A cross-layered direct-access file system

• Firmware-level file descriptor’s I/O queue scheduling

• OS-bypass for data-plane and control-plane operations
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ü Support POSIX semantics
ü Add I/O commands to I/O queue
ü Handle Concurrency control

Application

Storage

Kernel 
Component

LibFS

FirmFS

CrossFS Components

ü Handle I/O request scheduling
ü Manage Data and metadata
ü Support Journaling
ü Perform Permission checks

ü Handle FS mount and setup
ü Help with security

: data-plane ops : control-plane ops

I/O queues

Host CPUs

Device CPUs
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CrossFS I/O Processing Example
Application
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

LibFS

FirmFS

Kernel component

Create I/O command-
queue in DMA-able 
NVM region

Storage

Convert POSIX system call to 
FirmFS IO commands

Insert I/O commands to I/O 
queue (cmd-queue + data buffer)

FirmFS fetches I/O commands 
from command queue 

FirmFS performs permission 
check before processing

cmd-queue Data Buffer

NVM

Insert 
command

Process 
command
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• Inode-level rw-lock is the bottleneck
- Even non-overlapping reads and writes are serialized

• File descriptor is a natural concurrency abstraction
- Independent file descriptors for a shared file
- Map each file descriptor to an independent hardware I/O queue
- 64K I/O queues in modern storage

• Non-overlapping writes could be parallelized
- Different threads could open different file descriptors for a shared file

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz=4096, off=0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz=4096, off=8192);

Fine-grained Concurrency Control



Fine-grained Concurrency Control
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Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off =8192);

LibFS

FirmFS

Kernel component

Create FD-queue in 
DMA-able NVM region

NVM
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Fine-grained Concurrency Control
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Fine-grained Concurrency Control
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Fine-grained Concurrency Control
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Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off =8192);

LibFS

FirmFS
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Concurrent writes 
on a shared file
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Fine-grained Concurrency Control
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What about overlapping concurrent writes?

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

FirmFS

Kernel component

Create FD-queue in 
DMA-able NVM region

fd1 FD-queue fd2 FD-queue

NVM



Fine-grained Concurrency Control
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What about overlapping concurrent writes?

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
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Fine-grained Concurrency Control
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What about overlapping concurrent writes?

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
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Fine-grained Concurrency Control
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What about overlapping concurrent writes?

Thread 1
fd1 = open(“shared_file”, rw);
pwrite(fd1, buf, sz = 4096, off = 0);

Thread 2
fd2 = open(“shared_file”, rw);
pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

FirmFS

Kernel component

Create FD-queue in 
DMA-able NVM region

Which request to 
dispatch first?

fd1 FD-queue fd2 FD-queue

NVM

Op1 Op2



Fine-grained Concurrency Control
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Resolving overlapping writes – Interval tree data structure

[15, 20]
40

[10, 30]
30

[17, 19]
40

[5, 20]
20

[12, 15]
15

[30, 40]
40

CrossFS uses interval tree to store I/O block ranges for in-flight requests

Low high

Max in 
subtree

Efficient lookup of overlapping blocks requests across FD-queues
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Resolving conflict writes – Interval tree structure



Fine-grained Concurrency Control
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

LibFS

fd1 FD-queue fd2 FD-queue

NVM
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);
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Resolving conflict writes – Interval tree structure
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Resolving conflict writes – Interval tree structure
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Resolving conflict writes – Interval tree structure
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Resolving conflict writes – Interval tree structure
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Resolving conflict writes – Interval tree structure
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Resolving conflict writes – Interval tree structure
Thread 1
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
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Non-overlapping writes



Fine-grained Concurrency Control

48

Resolving conflict writes – Interval tree structure
Thread 1
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Resolving conflict writes – Interval tree structure
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Resolving conflict writes – Interval tree structure
Thread 1
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);
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Kernel component
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[0, 8k] [8k, 16k]

Interval tree lock

Interval tree unlock

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Non-overlapping writes
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
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LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Overlapping writes
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock
LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Overlapping writes
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock
LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Overlapping writes
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock

Interval tree unlock

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Overlapping writes
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

Interval tree lock

Interval tree unlock

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Op3

Overlapping writes
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Op3
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Op3
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op1 Op2

Op3

Order Op3 in the same 
queue as Op1 and make 

Op1 no-op
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op2

Op3

Order Op3 in the same 
queue as Op1 and make 

Op1 no-op
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op2

Op3

Order Op3 in the same 
queue as Op1 and make 

Op1 no-op

Lock is only required during 
interval tree lookup, insert 

and delete
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Resolving conflict writes – Interval tree structure
Thread 1

fd1 = open(“shared_file”, rw);
Op1: pwrite(fd1, buf, sz=4096, off=0)

Thread 2
fd2 = open(“shared_file”, rw);

Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

Kernel component

Create FD-queue in 
DMA-able NVM region

[0, 16k]

[8k, 12k][0, 4k] [4k, 8k]

[0, 8k] [8k, 16k]

LibFS

fd1 FD-queue fd2 FD-queue

NVM
Op2

Op3

Order Op3 in the same 
queue as Op1 and make 

Op1 no-op

Lock is only required during 
interval tree lookup, insert 

and delete

CrossFS converts file concurrency control to queue ordering problem
Once requests are ordered, FirmFS dispatches requests from queues in parallel
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fd1 FD-queue fd2 FD-queue

NVM

fdN FD-queue

Thousands of FD-
queues possible!
…

Device CPU Threads

How to dispatch FD-
queues efficiently?

• Need to dispatch and schedule FD-queues efficiently
- Thousands of FD-queues for large scale applications
- Few in-storage CPUs (four in our study)

• Insight: Unified file system + firmware I/O scheduler 
- Map FD-queues to FirmFS processing threads (i.e., device-level CPUs)
- Separate scheduling mechanism from scheduling policy



I/O Scheduling Policies

67

• Round Robin
- Each device CPU dispatches request from FD-queues
- Provides fairness but delays blocking operations (e.g., read, fsync)

• Urgent Aware Scheduling
- Prioritize blocking requests
- Avoid write request starvation by limiting write delays

• More sophisticated policies – future work!
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• FD-queue and data buffer crash consistency
- NVM provides persistence
- CLWB and memory fence to provide crash consistency

• FirmFS crash consistency
- Default meta-data journaling like current file systems
- Add offset of data buffer in NVM to the journal entry
- Get data journaling benefits at the cost of meta-data journaling

Please see our paper for more details!
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Experimental Setup
• Hardware platform

- Dual-socket 64-core Xeon Scalable CPU @ 2.6GHz
- 512GB Intel Optane DC NVM

• Emulate firmware-level FS (no programmable storage H/W)
- Reserve dedicated device threads for handling I/O requests
- Add PCIe latency for all I/O operations
- Reduce CPU frequency for device CPUs

• State-of-the-art file systems
- ext4-DAX, NOVA [FAST’ 16] (Kernel-level file system)
- Strata [SOSP ‘17], SplitFS [SOSP’ 19] (User-level file system)
- DevFS [FAST’ 18] (Firmware-level file system)
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Evaluation Goals

• Concurrent accesses scaling when sharing files?

• Reducing I/O software cost?

• Real-world application goals?

• I/O scaling without file sharing across threads?
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Microbenchmark – Read Scalability
Multiple readers and 4 writer threads accessing a 12GB shared file

• X-axis: # of concurrent readers
• Y-axis: Aggregated readers’ throughput
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Microbenchmark – Write Scalability
Multiple readers and 4 writer threads accessing a 12GB shared file

• X-axis: # of concurrent readers
• Y-axis: Aggregated writers’ throughput
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Non-overlapping writes dispatched in parallel
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Evaluation Goals

• Concurrent accesses scaling when sharing files?

• Reducing I/O software cost?

• Real-world application goals?

• I/O scaling without file sharing across threads?
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CrossFS Performance Breakdown
Multi-reader and multi-writer threads accessing a 12GB shared file
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2.71x
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Evaluation Goals

• Concurrent accesses scaling when sharing files?

• Reducing I/O software cost?

• Real-world application goals?

• I/O scaling without file sharing across threads?
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Macro-benchmark: Filebench
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• X-axis: # of filebench threads
• Y-axis: benchmark throughput
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Macro-benchmark: Filebench
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CrossFS writes to NVM buffers first and then asynchronously dispatches 
request, hence achieves high throughput

2.91x
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Evaluation Goals

• Concurrent accesses scaling when sharing files?

• Reducing I/O software cost?

• Real-world application goals?

• I/O scaling without file sharing across threads?
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Application - RocksDB
DBbench fillrandom (random write) benchmark 

• X-axis: # of DBbench threads
• Y-axis: fillrandom benchmark throughput
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Application - RocksDB
DBbench fillrandom (random write) benchmark 
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2.27x

- RocksDB threads append kv-pairs to shared log files.
- CrossFS eliminates inode-level lock overheads 
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Summary

• Motivation
- Software overhead matters and providing direct-access is critical
- Poor coarse-grained concurrency in current file systems

• Solution – Cross-layered file system
- Disaggregation of file system components across S/W and firmware
- File descriptor-level parallelism replacing inode-level locking bottleneck
- File descriptor scheduling and cross-layered crash consistency 

• Evaluation
- CrossFS shows up to 4x micro-benchmark performance gains
- CrossFS shows up to 2x application performance gains
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Conclusion

• Storage hardware (with compute capability) has reached the microsecond era

• Providing direct I/O and utilizing host and storage-level compute is critical
- Our approach: Cross-layered storage file system design

• Future work:
- H/W integration, support for sophisticated scheduling policies, other 
file system operations (e.g., mmap())

• Fine grained concurrency control is important for I/O scalability
- Our approach: File-descriptor concurrency control



Thanks!
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Questions?

yujie.ren@rutgers.edu
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Macro-benchmark: Filebench
Varmail (metadata-heavy workloads)
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• X-axis: # of filebench threads
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1.36x
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Application - RocksDB
DBbench readrandom benchmark 

• X-axis: # of DBbench threads
• Y-axis: readrandom benchmark throughput
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CrossFS eliminate system call overheads


