CrossFS: A Cross-layered Direct-Access
File System

Yujie Ren’, Changwoo Min?, and Sudarsun Kannan'

" Rutgers University; “ Virginia Tech

TTTTTTTTTTTTTTTTTT
EEEEEEEEEEE

Modern File System Limitations

* High software overheads
- System call overheads compounded with layers of I/O stack

* Lack support for leveraging host and device-level compute
- Host CPUs are fast, but low utilization for processing /O requests

- Device CPUs are under-utilized

* Coarse-grained locks leading to non-scalable concurrent access
- Inode-level lock limits concurrent access for shared file

- Even updates to non-overlapping range of blocks are serialized

Our Solution: CrossFS

* Disaggregates file system across user-level, OS, and firmware
Divides work across host-level and device-level compute

* Applications directly access the firmware file system
Avoids system call overheads for data and control plane

* Designs fine-grained file descriptor-level concurrency
Replaces coarse-grained inode-level lock in current file systems

* Achieves Up to 4x higher throughput!

Outline

- Background
. Motivation
. Design

- Evaluation

. Conclusion

Modern Storage Devices

4)
In-storage
T compute is
powerful
Volatile oRam \\]~ Latency B/W $/GB

None-Volatile / NVM \ 300ns 10 GB/s 4.0

/ Ultra-fast SSD \ 40 us 2 GB/s 0.25
/ HDD \ Sms 26MB/s 0.02

/O Software Overheads

—> : Kernel Trap
—> : OS Overhead

i

Application 4)
Reducing file system
write(filel) software cost is
iaiaialaiaiaiaie. Al critical
|
! VFS Layer | /
| \ l
' | Actual FS| PMFS extd (> Page Cache | | - 4
| - S

: i | .
| Block I/O Layer |
! :
I |
I |
! l

OS Kernel Device Driver

/O Software Overheads

Application

Application

write(filel)l S 33 write(file])

VFS Layer
N
Actual FS| PMFS extd (> Page Cache
Block 1/O Layer

OS Kernel

Device Driver

4 N

Increasing thread-
level and process-
level concurrency is

vortant! Y,

| -4us

—> : Kernel Trap
—> : OS Overhead

Application 1/O Behavior

* Small random |I/O dominates access patterns
- Desktop applications (e.g., SQLite)
- Server applications (e.g., RocksDB, SQL databases)

* Concurrent file access is critical for /O scalability
- Threads read/write to shared file concurrently (e.g., RocksDB, MySQL)

- Processes share files (e.g., HPC applications)

* Crash consistency is important
- Application-level crash consistency is difficult

- Application relies on file system for crash consistency

State-of-the-art Designs

Kernel-FS

Application

User-FS

|

Application

FS Lib

Kernel FS

Storage

v

Trusted FS
Server

! I

ext4-DAX
NOVA (FAST’ 16)

Storage

» : data-plane ops

Strata (SOSP’ |7)
SplitFS (SOSP’ 19)

Firmware-FS

Application

FS Lib

v v

Firmware FS

Storage

DevFS (FAST’ 18)
Insider (ATC’ 19)

: control-plane ops

Outline

. Background
- Motivation
. Design

. Evaluation
. Conclusion

|10

File System Approaches Summary

% - E’ & | Satisfy
File LD g ‘s - . |
Classes 0 O = o 5 | O Partially satisfy
System N O 5 4 O
c— c
5 it S 8 Not satisfy

Kernel-FS ext4-DAX

. 4)
User-FS SplitFS Ideal for
achieving higher
S DevES performance

N

More file systems discussed in the paper
|

¢4 O 8 orecacces
%< <

G %8 %

ﬁXXX

| —
_Cross-FS CrossFS

Concurrency Limitations - Analysis

Two threads write to disjoint blocks of a shared file

App Thread | App Thread 2
write(shared file, Block 2) ; g write(shared _file, Block N)
File System inode i

L\
Block | | Block 2 | Block 3 Block N

Shared file

Concurrency Limitations - Analysis

Two threads write to disjoint blocks of a shared file

App Thread | App Thread 2
write(shared file, Block 2) ; g write(shared _file, Block N)
File System inode i

\
Block | | Block 2 | Block 3 Block N

Shared file

Concurrency Limitations - Analysis

Two threads write to disjoint blocks of a shared file

App Thread | App Thread 2
write(shared file, Block 2) ; g write(shared _file, Block N)
File System inode G

\
Block | | Block 2 | Block 3 Block N

Shared file

Concurrency Limitations - Analysis

Two threads write to disjoint blocks of a shared file

App Thread | App Thread 2
write(shared file, Block 2) ; g write(shared _file, Block N)
File System inode G

\
Block | | Block 2 | Block 3 Block N

Shared file

Concurrency Limitations - Analysis

Two threads write to disjoint blocks of a shared file

App Thread | App Thread 2
write(shared file, Block 2) ; 3 write(shared _file, Block N)

File System inode G G '

T

\
Block | | Block 2 | Block 3 Block N

Shared file

Concurrency Limitations - Analysis

Two threads write to disjoint blocks of a shared file

write(shared_file, Block 2) g

File System

Shared file

App Thread | App Thread 2

s @ a

G e o e o o o o e e e e e e o o o o T o S e S S S e S R R S S e e —-— o e - - -

g write(shared _file, Block N)

-

Block | | Block 2 | Block 3 Block N

s

Coarse-gained per-
inode locks for
disjoint blocks!

~

J

Concurrency Limitations - Analysis

Concurrent reader and writer threads randomly accessing a shared file

6 1 cext4-DAX (Kernel-FS)
g Strata (User-FS)
O 4 { £1DevFS (Firmware-FS) 4 v)
' node-ieve
o CrossFS locking is the
'go 5 bottleneck!
8 - /?.\ —————— <\7 ------ <> W/// /
-C s
— <>’,,f

O) ' ' T

1 4 8 16

of reader threads (with 4 writer threads)

X-axis shows # of reader threads
Y-axis shows the aggregated throughput

Outline

. Background
. Motivation
- Design

. Evaluation
. Conclusion

19

A

Our Solution: CrossFS

cross-layered direct-access|file system

Disaggregated FS components to exploit host and device CPUs

OS-bypass for data-plane and control-plane operations

File descriptor-based fine-grained concurrency control

Firmware-level file descriptor’s /O queue scheduling

Cross-layered crash consistency

CrossFS Components

{é}{é}@{é} Application

Host CPUs

|

|

|
\

/O queues
|

{oF {of

Device CPUs

LibFS

Kernel
Component

A 4

\ 4

v" Support POSIX semantics
v Add I/O commands to /O queue

v" Handle Concurrency control

v Handle FS mount and setup
v" Help with security

FirmFS

Storage

» : data-plane ops

v" Handle I/O request scheduling
v’ Manage Data and metadata

v" Support Journaling

v" Perform Permission checks

» : control-plane ops

CrossFS 1/0O Processing Example

Application

fdl = open(“shared_file”, rw);
— pwrite(fdl, buf, sz = 4096, off = 0);

Convert POSIX system call to
FirmFS |O commands

Insert I/O commands to I/O
queue (cmd-queue + data buffer)

FirmFS fetches I/O commands
from command queue

Insert — LibFS
command
cmd-queue | Data Buffer
- Kernel component
NVM Create /O command-
queue in DMA-able
NVM region
Process ___J FirmFS
command
Storage

FirmFS performs permission
check before processing

Fine-grained Concurrency Control

* Inode-level rw-lock is the bottleneck
- Even non-overlapping reads and writes are serialized

* Non-overlapping writes could be parallelized
- Different threads could open different file descriptors for a shared file

Thread |
fdl = open(“shared_file”, rw);
pwrite(fd] buf, sz=4096, off=0);

Thread 2
fd2 = open(“‘shared_file”, rw);
pwrite(fd2| buf, sz=4096, off=8192);

* File descriptor is a natural concurrency abstraction
- Independent file descriptors for a shared file

- Map each file descriptor to an independent hardware I/O queue

- 64K I/O queues in modern storage

23

Fine-grained Concurrency Control

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread | Thread 2
fdl = open(“shared file”, rw); fd2 = open(“shared _file”, rw);
pwrite(fdl, buf, sz = 4096, off = 0); pwrite(fd2, buf, sz = 4096, off =8192);
LibFS
Kernel component
NVM Create FD-queue in
DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread | Thread 2
—> fd| = open(‘‘shared_file”, rw); fd2 = open(“shared _file”, rw);
pwrite(fdl, buf, sz = 4096, off = 0); pwrite(fd2, buf, sz = 4096, off =8192);
LibFS
Kernel component
NVM Create FD-queue in
DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread | Thread 2
—> fd| = open(‘‘shared_file”, rw); fd2 = open(“shared _file”, rw);
pwrite(fdl, buf, sz = 4096, off = 0); pwrite(fd2, buf, sz = 4096, off =8192);
LibFS
fd; FD-queue Kernel component
NVM Create FD-queue in
DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread | Thread 2

fdl = open(“shared file”, rw); —» fd2 = open(“‘shared_file”, rw);

pwrite(fdl, buf, sz = 4096, off = 0); pwrite(fd2, buf, sz = 4096, off =8192);
LibFS

fd, FD-queue fd, FD-queue

Kernel component

NVM Create FD-queue in
DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
—> pwrite(fd |, buf, sz = 4096, off = 0); pwrite(fd2, buf, sz = 4096, off =8192);
LibFS

fd, FD-queue fd, FD-queue

-I Kernel component

NVM Create FD-queue in
DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“‘shared_file”, rw);
pwrite(fdl, buf, sz = 4096, off = 0); — pwrite(fd2, buf, sz = 4096, off =8192);
LibFS
fd, FD-queue fd, FD-queue Kernel component
-\ Op2

NVM Create FD-queue in
DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

Align each file descriptor to a dedicated I/O queue (FD-queue)

Thread | Thread 2

fdl = open(“shared file”, rw); fd2 = open(“shared _file”, rw);

pwrite(fdl, buf, sz = 4096, off = 0); pwrite(fd2, buf, sz = 4096, off =8192);
LibFS

fd, FD-queue fd, FD-queue

Kernel component

S o
Concurrent writes
&}ashared file J NVM Create FD-queue in

DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

What about overlapping concurrent writes?

Thread | Thread 2

fdl = open(“shared file”, rw); fd2 = open(“shared _file”, rw);

pwrite(fdl, buf, sz = 4096, off = 0); pwrite(fd2, buf, sz = 4096, off = 0);
LibFS

fd, FD-queue fd, FD-queue

Kernel component

NVM Create FD-queue in
DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

What about overlapping concurrent writes?

Thread | Thread 2
fdl = open(“shared file”, rw); fd2 = open(“shared _file”, rw);
—» pwrite(fd |, buf, sz = 4096, off = 0); —» pwrite(fd2, buf, sz = 4096, off = 0);
LibFS

- fd, FD-
fd, FD-queue 2 F-queue Kernel component

NVM Create FD-queue in
DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

What about overlapping concurrent writes?

Thread | Thread 2
fdl = open(“shared file”, rw); fd2 = open(“shared _file”, rw);
—» pwrite(fd |, buf, sz = 4096, off = 0); —» pwrite(fd2, buf, sz = 4096, off = 0);
LibFS

fd, FD- fd, FD-
| F-queue 2 F-quete Kernel component
- Op2

NVM Create FD-queue in
DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

What about overlapping concurrent writes?

Thread | Thread 2
fdl = open(“shared file”, rw); fd2 = open(“shared _file”, rw);
—» pwrite(fd |, buf, sz = 4096, off = 0); —» pwrite(fd2, buf, sz = 4096, off = 0);
LibFS

fd, FD- fd, FD-
| F-queue 2 F-quete Kernel component
- Op2

Which request to
dispatch first? NVM Create FD-queue in
DMA-able NVM region

FirmFS

Fine-grained Concurrency Control

Resolving overlapping writes — Interval tree data structure

Efficient lookup of overlapping blocks requests across FD-queues

h

Low. igh
[15, 20] |
Max in
40 1-
\. subtree

T

() ()
[10, 30] [17, 19]
30 40
g J g J
4 /\ N '\f‘ N
[5, 20] [12, 15] 130, 40]
20 5 40
J \ J \

CrossFS uses interval tree to store /O block ranges for in-flight requests
35

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread |
fdl = open(“shared file”, rw);
Op|: pwrite(fdl, buf, sz=4096, off=0)

Thread 2

fd2 = open(“shared_file”, rw);
Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

fd, FD-queue fd, FD-queue

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

37

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

[0, 8k] 18k, 16k]

[0, 4k] 8K, 12Kk]

b [4k, 8k]

fd, FD- fd, FD-
| Fo-queue 1d; FU-queue Kernel component

NVM
Create FD-queue in

DMA-able NVM region

38

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
—» Op|: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

[0, 8k] 18k, 16k]

[0, 4k] 8K, 12Kk]

b [4k, 8k]

fd, FD- fd, FD-
| Fo-queue 1d; FU-queue Kernel component

NVM
Create FD-queue in

DMA-able NVM region

39

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
—» Op|: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

G Interval tree lock

[0, 8k] 18k, 16k]

[0, 4k] 8K, 12Kk]

b [4k, 8k]

fd, FD- fd, FD-
| Fo-queue 1d; FU-queue Kernel component

NVM
Create FD-queue in

DMA-able NVM region

40

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
—» Op|: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

[0, 8k] 18k, 16k]

[0, 4k] 8K, 12Kk]

b [4k, 8k]

fd, FD- fd, FD-
| Fo-queue 1d; FU-queue Kernel component

NVM
Create FD-queue in

DMA-able NVM region

41

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
—» Op|: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

[0, 8k] 18k, 16k]

[0, 4k]

b [4k, 8k]

[8k, 12k] G Interval tree unlock

fd, FD- fd, FD-
| Fo-queue 1d; FU-queue Kernel component

NVM
Create FD-queue in

DMA-able NVM region

42

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
—» Op|: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

18k, 16k]

b [4k, 8k]

[8k, 12k] G Interval tree unlock

fd, FD-giueue fd, FD-queue

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

43

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
—» Op|: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

18k, 16k]

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

44

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

18k, 16k]

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

45

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2

fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Opl: pwrite(fdl, buf, sz=4096, off=0) || = Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

18k, 16k]

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

46

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2

fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Opl: pwrite(fdl, buf, sz=4096, off=0) || = Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

[8k, 16k] Non-overlapping writes

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

47

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2

fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Opl: pwrite(fdl, buf, sz=4096, off=0) || = Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

[8k, 16k] Non-overlapping writes

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

48

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2

fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Opl: pwrite(fdl, buf, sz=4096, off=0) || = Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

[8k, 16k] Non-overlapping writes

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

49

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2

fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Opl: pwrite(fdl, buf, sz=4096, off=0) || = Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

[8k, 16k] Non-overlapping writes

b [4k, 8k]

[8k, 12k] G Interval tree unlock

fd, FD-giueue fd, FD-queue

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

50

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2

fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Opl: pwrite(fdl, buf, sz=4096, off=0) || = Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

[8k, 16k] Non-overlapping writes

b [4k, 8k]

[8k, 12k] G Interval tree unlock

fd, FD-giueue fd, FD-queue

S [on

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

51

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2

fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Opl: pwrite(fdl, buf, sz=4096, off=0) || = Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

18k, 16k]

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Sl [or

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

52

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

18k, 16k]

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Sl [or

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

53

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
—» Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

18k, 16k]

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Sl [or

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

54

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
—» Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

[8k, 16k] Overlapping writes

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Sl [or

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

55

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
—» Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

[8k, 16k] Overlapping writes

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Sl [or

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

56

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
—» Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

[8k, 16k] Overlapping writes

[8k, |2Kk]

b [4k, 8k]

fd, FD-giueue fd, FD-queue

Sl [or

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

57

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
—» Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

[8k, 16k] Overlapping writes

b [4k, 8k]

[8k, 12k] G Interval tree unlock

fd, FD-giueue fd, FD-queue

Sl [or

Kernel component

NVM
Create FD-queue in

DMA-able NVM region

58

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
—» Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

ﬂ Interval tree lock

[8k, 16k] Overlapping writes

b [4k, 8k]

[8k, 12k] G Interval tree unlock

fd, FD-gill’.lleue fd, FD-queue

Op2

Kernel component

NVM

Create FD-queue in
DMA-able NVM region

59

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
—» Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

18k, 16k]

[8k, |2Kk]

b [4k, 8k]

fd, FD-gill’.lleue fd, FD-queue

Op2

Kernel component

NVM

Create FD-queue in
DMA-able NVM region

60

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread | Thread 2
fdl = open(“shared_file”, rw); fd2 = open(“shared_file”, rw);
Op |: pwrite(fdl, buf, sz=4096, off=0) Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

LibFS

[0, 16k]

18k, 16k]

[8k, |2Kk]

b [4k, 8k]

fd, FD-gill’.lleue fd, FD-queue

Op2

Kernel component

NVM

Create FD-queue in
DMA-able NVM region

61

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread |
fdl = open(“shared file”, rw);
Op|: pwrite(fdl, buf, sz=4096, off=0)

Thread 2

fd2 = open(“shared_file”, rw);
Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

[0, 16k]

b [4k, 8k]

18k, 16k]

[8k, |2Kk]

LibFS

fd, FD-gill’.lleue fd, FD-queue

Op2

(" Order Op3 in the same)
queue as Op| and make

Kernel component

NVM
/ Create FD-queue in

vC)pl no-op

DMA-able NVM region

62

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread |
fdl = open(“shared file”, rw);
Op|: pwrite(fdl, buf, sz=4096, off=0)

Thread 2

fd2 = open(“shared_file”, rw);
Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

[0, 16k]
[0, 8k] 18k, 16k]

[0, 4k]

[8k, |2Kk]

LibFS

b [4k, 8k]

fd, FD-qll’.lleue fd, FD-queue

Op2

(" Order Op3 in the same)
queue as Op| and make

Kernel component

NVM
/ Create FD-queue in

vC)pl no-op

DMA-able NVM region

63

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread |
fdl = open(“shared file”, rw);
Op|: pwrite(fdl, buf, sz=4096, off=0)

Thread 2

fd2 = open(“shared_file”, rw);
Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

[0, 16k]

b [4k, 8k]

[0, 8k] 18k, 16k]

[0, 4k]

[8k, |2Kk]

LibFS

4 . . e)
Lock is only required during
interval tree lookup, insert

Wand delete Y

fd, FD-qllilJeue fd, FD-queue

Op2

(" Order Op3 in the same)
queue as Op| and make

Kernel component

NVM
/ Create FD-queue in

vC)pl no-op

DMA-able NVM region

64

Fine-grained Concurrency Control

Resolving conflict writes — Interval tree structure

Thread |

fdl = open(“shared file”, rw);
Opl: pwrite(fdl, buf, sz=4096, off=0)

Thread 2

fd2 = open(“shared_file”, rw);
Op2: pwrite(fd2, buf, sz=4096, off = 4096)
Op3: pwrite(fd2, buf, sz = 4096, off = 0);

[0, 16k]

[0, 8K] 8K, 16Kk]

[0, 4k] [4k, 8K]

[8k, |2Kk]

LibFS

4 . . e)
Lock is only required during
interval tree lookup, insert

Wand delete y

CrossFS converts file concurrency control to queue ordering problem

Once requests are ordered, FirmFS dispatches requests from queues in parallel

OpT no-op

Create FD-queue in

DMA-able NVM region

65

Unified 1/O Scheduler Framework

* Need to dispatch and schedule FD-queues efficiently

- Thousands of FD-queues for large scale applications
- Few in-storage CPUs (four in our study)

fd, FD-queue fd, FD-c

ueue

fd\ FD-queue

Thousands of FD-
queues possible!

NVM

4)
How to dispatch FD-

Device CPU Threads ; g g 3

* Insight: Unified file system + firmware I/O scheduler

queues efficiently?

J

]

- Map FD-queues to FirmFS processing threads (i.e., device-level CPUs)

- Separate scheduling mechanism from scheduling policy

66

/O Scheduling Policies

* Round Robin
- Each device CPU dispatches request from FD-queues

- Provides fairness but delays blocking operations (e.g., read, fsync)

* Urgent Aware Scheduling
- Prioritize blocking requests

- Avoid write request starvation by limiting write delays

* More sophisticated policies — future work!

67

Cross-Layered Crash Consistency

* FD-queue and data buffer crash consistency
- NVM provides persistence

- CLWB and memory fence to provide crash consistency

* FirmFS crash consistency
- Default meta-data journaling like current file systems

- Add offset of data buffer in NVM to the journal entry

- Get data journaling benefits at the cost of meta-data journaling

Please see our paper for more details!

68

Outline

. Background
. Motivation
. Design

- Evaluation
. Conclusion

69

Experimental Setup

* Hardware platform
- Dual-socket 64-core Xeon Scalable CPU @ 2.6GHz

- 512GB Intel Optane DC NVM

* Emulate firmware-level FS (no programmable storage H/VV)
- Reserve dedicated device threads for handling I/O requests

- Add PCle latency for all I/O operations
- Reduce CPU frequency for device CPUs

* State-of-the-art file systems
- ext4-DAX, NOVA [FAST’ 16] (Kernel-level file system)

- Strata [SOSP ‘17], SplitFS [SOSP’ 19] (User-level file system)
- DevFS [FAST’ 18] (Firmware-level file system)

70

Evaluation Goals

Concurrent accesses scaling when sharing files?

Reducing I/O software cost?

1/O scaling without file sharing across threads?

Real-world application goals?

71

Microbenchmark — Read Scalability

Multiple readers and 4 writer threads accessing a 12GB shared file

6000 1 4 ext4-DAX mNOVA ‘
3 mDevFS mSplitFS
§,4000 = //

o m Strata = CrossFS 4.87x ,
o ,
-
3’2000 -
=
B Y ﬁ

O -

1 4 3 16

of reader threads (w/ 4 writer threads)
o X-axis: # of concurrent readers
* Y-axis: Aggregated readers’ throughput

Readers do not have to wait for writers
72

Microbenchmark — Write Scalability

Multiple readers and 4 writer threads accessing a 12GB shared file

3000 - B ext4-DAX BNOVA B DevFS
0 B SplitFS M Strata @ CrossFS
)

2 2000 - _
_é— 3.41 x///
1000 - '
£

0 -

1 4 3 16

of reader threads (w/ 4 writer threads)

e X-axis: # of concurrent readers
* Y-axis: Aggregated writers’ throughput

Non-overlapping writes dispatched in parallel

73

Evaluation Goals

Concurrent accesses scaling when sharing files?

Reducing /O software cost?

1/O scaling without file sharing across threads?

Real-world application goals?

74

CrossFS Performance Breakdown

Multi-reader and multi-writer threads accessing a 12GB shared file

6000 - —
[] - Urgent-aware Scheduler
7 Kernel Bypass
0
> 4000 - 2.71x [l Scalability Design
')
3_ - CrossFS-ioctl-lock
E,
© 2000 - Bl —
c
- I 2.51x
0
Readers Writers

e X-axis: |6 concurrent reader threads, 4 concurrent writer threads
* Y-axis: Aggregated writers’ throughput

75

Evaluation Goals

Concurrent accesses scaling when sharing files?

Reducing I/O software cost?

1/O scaling without file sharing across threads?

Real-world application goals?

76

Macro-benchmark: Filebench

Fileserver (write-heavy workload)
1200 -

G ext4-DAX
2 NOVA
& 800 - A DevFS ’
ey CrossFS = — -
g ””’/
3 o
3 4004 — et
: o PRI-SE
G
O I I |
| ‘ : S 12

of threads

e X-axis: # of filebench threads
* Y-axis: benchmark throughput

77

Macro-benchmark: Filebench

Fileserver (write-heavy workload)
1200 -

© ext4-DAX
Q NOVA
§ soo { EDevFS L B
o CrossFS P =~ -
% Z gl 2.91x
3 4004 g
E e O T S O Y-
CrmmmmmmT <"
O)]
| ‘ . 8 12

of threads

CrossFS writes to NVM buffers first and then asynchronously dispatches
request, hence achieves high throughput

/8

Evaluation Goals

Concurrent accesses scaling when sharing files?

Reducing I/O software cost?

1/O scaling without file sharing across threads?

Real-world application goals?

79

Application - RocksDB

DBbench fillrandom (random write) benchmark

400 - B ext4-DAX
— @ DevFS
‘§.3OO -
=
3200 -

e
=
9100 - I I I
C
|_
0 -
1 2 4 3

of RockDB threads

X-axis: # of DBbench threads
Y-axis: fillrandom benchmark throughput

B NOVA
B CrossFS

80

Application - RocksDB

DBbench fillrandom (random write) benchmark

B ext4-DAX mE NOVA
@ DevFS B CrossFS

AN

()

o
)

W

-

-
|

2.27x

/

—

o

o
1

Throughput (kops/s)
S
O

o
I

1 2 4 8 16
of RockDB threads

- RocksDB threads append kv-pairs to shared log files.
- CrossFS eliminates inode-level lock overheads

8l

Summary

* Motivation
- Software overhead matters and providing direct-access is critical

- Poor coarse-grained concurrency in current file systems

* Solution — Cross-layered file system
- Disaggregation of file system components across S/WV and firmware

- File descriptor-level parallelism replacing inode-level locking bottleneck

- File descriptor scheduling and cross-layered crash consistency

* Evaluation
- CrossFS shows up to 4x micro-benchmark performance gains

- CrossFS shows up to 2x application performance gains

82

Conclusion

Storage hardware (with compute capability) has reached the microsecond era

Providing direct I/O and utilizing host and storage-level compute is critical
- Our approach: Cross-layered storage file system design

Fine grained concurrency control is important for |/O scalability
- Our approach: File-descriptor concurrency control

Future work:
- H/WV integration, support for sophisticated scheduling policies, other
file system operations (e.g., mmap())

83

Thanks!

yujie.ren@rutgers.edu

Questions?

Backup Slides

Macro-benchmark: Filebench

Varmail (metadata-heavy workloads)

1200 - © ext4-DAX B
2 NOVA
§ |.36x
§' 800 - HDevfs A L -
o CrossFS [l
5 P
o .
&0 -
§ 400 - e >
-
] B 2%

0 i O <I->--
| ? + S 12
of Threads

o X-axis: # of filebench threads
* Y-axis: benchmark throughput

CrossFS eliminate system call overheads

86

Application - RocksDB

DBbench readrandom benchmark

2800 - W ext4-DAX
gzmo m NOVA
§' @ DevFS
;1400 | ®CrossFS
&
20
o 700 - ﬂ
=
cormm b
1 2

of RockDB threads

* X-axis: # of DBbench threads
* Y-axis: readrandom benchmark throughput

CrossFS eliminate system call overheads

87

