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Goal: formally verified (e)BPF JITs in the Linux kernel

• BPF is widely deployed for extending the Linux kernel 

• In-kernel JIT compilers translate BPF to machine code 
for performance 

• Correctness is critical 

• Code runs directly in kernel 

• Makes decisions throughout kernel
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Recent work on formal verification of systems

• This talk: how to apply formal verification to the BPF JITs in the Linux kernel
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• Not designed for verification 

• Practical specification of JIT correctness 

• Prevents real-world bugs, enables optimizations

Challenges: verifying BPF JITs in the Linux kernel

• Rapidly evolving JITs 

• Scale automated verification to JIT compilers 

• Catch up with new features being added
• Integration with kernel development 

• Write JITs in domain-specific language; extract to C code 

• Auditable without requiring formal methods background



Contributions
• Jitterbug: automated formal verification of BPF JITs 

• Specification for reasoning about JITs 

• Automated proof strategy 

• Upstreamed changes in the Linux kernel 

• New BPF JIT for RISC-V (32-bit) since v5.7 

• Found and fixed new bugs and wrote new optimizations for 
existing JITs for x86 (32 & 64-bit), Arm (32 & 64-bit), RISC-V (64-bit) 

• Clarification changes in RISC-V instruction-set manual
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BPF JIT overview: compilation

• Application submits BPF program to 
kernel 

• In-kernel checker ensures safety of 
BPF program 

• JIT compiler translates to machine 
code
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Machine code

BPF JIT overview: run time

Input data Return valuePrologue Body Epilogue

• Behaves like a regular kernel function 

• Interacts with kernel through return value, memory accesses, function calls

Kernel memory / Helper functions



Bugs in the BPF JITs in Linux: May 2014— Apr. 2020
• 82 JIT correctness bugs in x86 (32- & 64-bit), Arm (32- & 64-bit), RISC-V (64-bit) 

• Bugs in every category of instructions 

• Difficult to exhaustively test
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Example: load 32-bit value from memory (x86)
case BPF_LDX | BPF_MEM | BPF_W: 
... 
/* Emit code to clear high bits */ 
if (!bpf_prog->aux->verifier_zext) 
  break; 
if (dstk) { 
  /* MOV [ebp+off], 0 */ 
  EMIT3(0xC7, add_1reg(0x40, IA32_EBP), 
        STACK_VAR(dst_hi)); 
  EMIT(0x0, 4); 
} else { 
  /* MOV dst_hi, 0 */ 
  EMIT3(0xC7, add_1reg(0xC0, dst_hi), 0); 
}

JIT control flow: 
dst_hi spilled to stack

JIT control flow: 
dst_hi mapped to reg

Optimization 
(analyzed by kernel)



Example: load 32-bit value from memory (x86)
case BPF_LDX | BPF_MEM | BPF_W: 
... 
/* Emit code to clear high bits */ 
if (!bpf_prog->aux->verifier_zext) 
  break; 
if (dstk) { 
  /* MOV [ebp+off], 0 */ 
  EMIT3(0xC7, add_1reg(0x40, IA32_EBP), 
        STACK_VAR(dst_hi)); 
  EMIT(0x0, 4); 
} else { 
  /* MOV dst_hi, 0 */ 
  EMIT3(0xC7, add_1reg(0xC0, dst_hi), 0); 
}

Bug: mov encoding missing 
3 bytes of immediate 

Bug: inverted check for 
optimization



Writing correct JITs is difficult
• Must consider multiple levels 

• JIT configuration (e.g., optimizations) 

• Control flow in both JIT and emitted code 

• Semantics of source and target instructions 

• Need a specification to rule out bugs 

• Restricted form of compiler correctness 

• Intuition: Machine code must behave equivalently to source BPF 
program



JIT correctness specification (1/3)

source program

target program

JIT compilerconfiguration

safe

For any safe source program, JIT configuration (e.g., optimizations), 
and target program produced by JIT:



For any input data, execution of source and target programs produce same 
trace and return value

T0 T1 T2

y = load(x)

Tn return 
value

target states & events

JIT correctness specification (2/3)
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JIT compiler
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JIT correctness specification (3/3)

target 
program

JIT compiler input 
data

T0 T1 T2

y = load(x)

Tn return 
value

Architectural safety: 
A(T0, Tn)

Execution of target program preserves architectural safety 

Example: callee-saved registers preserved



JIT correctness pros & cons

Advantages: 
• Intuitive & effective at preventing bugs 
• Tailored for in-kernel execution 

Disadvantages: 
• Not amenable to automated verification   
(hard to encode to SMT)



Exploit JIT structure: per-instruction translation

push %rbp
...

...
retq

ADD64_REG R1,R2

addq %rdi, %rsiemit_insn

...
...

emit_prologue

emit_epilogue

x86 program

... ...

emit_insn

emit_insn

BPF program

Existing JITs in Linux:  emit_prologue + N × emit_insn + emit_epilogue



Breaking down JIT correctness

JIT correctness

JIT assumptions Prologue 
correctness

Per-instruction 
correctness

Epilogue 
correctness

• Assume per-instruction JIT 

• Correctness of each translation step implies JIT correctness 

• Amenable to automated verification
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• Assume per-instruction JIT 

• Correctness of each translation step implies JIT correctness 

• Amenable to automated verification
Scaling automated verification 

• Requires reasoning about symbolic 
machine code produced by JIT 

• Prior work works on concrete code 
• See paper for details on how to scale



Developing and verifying the BPF JIT for RISC-V (32-bit)

•Written in DSL; extracted to C 

•Started in 2019, co-developed with specification and 
proof technique over ~10 months 

•Five iterations of code review; accepted in March 2020 

•Automated verification enables catching up with features 
(e.g. zero-extension optimization, 100+ opcodes) 



Improving existing JITs
• x86 (32- & 64-bit), Arm (32- & 64-bit), RISC-V (64-bit) 

• Manually translate C code to DSL; less than 3 weeks each 

• Found and fixed 16 new correctness bugs across 10 patches 

• Developed and verified 12 optimization patches 

• Demonstrates effectiveness of specification



Conclusion

• Case study of applying formal verification to BPF JITs in the Linux kernel 

• Jitterbug: specification + automated proof strategy 

• Developed new BPF JIT for RISC-V (32-bit) 

• Improved existing JITs with bug fixes and optimizations 

• Extending automated verification to a restricted class of JIT compilers


