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Goal: formally verified (e)BPF JITs in the Linux kernel

® BPF is widely deployed tor extending the Linux kernel Application

® |n-kernel JIT compilers translate BPF to machine code BPF program
for pertormance l

® Correctness is critical Packet filtering

® Code runs directly in kernel Linux Tracing programs

kernel Sandbox policies

® Makes decisions throughout kernel




Recent work on formal verification of systems
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¢ This talk: how to apply formal verification to the BPF JITs in the Linux kernel



Challenges: verifying BPF JITs in the Linux kernel

® Not designed for veritication
® Practical specification of JIT correctness

® Prevents real-world bugs, enables optimizations

® Rapidly evolving JITs
® Scale automated verification to JIT compilers

® Catch up with new features being added

® |ntegration with kernel development
® Write JITs in domain-specitic language; extract to C code

® Auditable without requiring formal methods background



Contributions

® Jitterbug: automated tormal veritication of BPF JITs
® Specification for reasoning about JITs
® Automated proof strategy

® Upstreamed changes in the Linux kernel
® New BPF JIT for RISC-V (32-bit) since v5.7

® Found and fixed new bugs and wrote new optimizations for
existing JITs for x86 (32 & 64-bit), Arm (32 & 64-bit), RISC-V (64-bit)

® Clarification changes in RISC-V instruction-set manual



Contributions

® Jitterbug: automated tormal veritication of BPF JITs

¢ Specification for reasoning about JITs (this talk)

® Upstreamed changes in the Linux kernel
® New BPF JIT for RISC-V (32-bit) since v5.7

® Found and fixed new bugs and wrote new optimizations for
existing JITs for x86 (32 & 64-bit), Arm (32 & 64-bit), RISC-V (64-bit)

® Clarification changes in RISC-V instruction-set manual



BPF JIT overview: compilation

® Application submits BPF program to
kernel

® |n-kernel checker ensures safety of
BPF program

® JIT compiler translates to machine
code

Application

BPF program

l

Linux
kernel

BPF safety checker

'

BPF JIT compiler

v

Machine code




BPF JIT overview: run time

® Behaves like a regular kernel function

® |nteracts with kernel through return value, memory accesses, function calls

Machine code
Inlet dat;> Prologue Body Epilogue Return Value

Kernel memory / Helper functions




Bugs in the BPF JITs in Linux: May 2014- Apr. 2020
® 82 JIT correctness bugs in x86 (32- & 64-bit), Arm (32- & 64-bit), RISC-V (64-bit)

® Bugs in every category of instructions

® Difficult to exhaustively test

CALL Tail call and EXIT
3 10
JMP Prologue and Epilogue
13‘ 5
MEM
18 7 ALU

33



Example: load 32-bit value from memory (x86)

case BPF_LDX | BPF_MEM | BPF_W: . ~
Optimization
(analyzed by kernel)
1f (!bpf_prog->aux->verifier_ zext) __—— Y
break;
1f (dstk) { 4 ™

JIT control flow:

EMIT3(@xC7, add 1reg(©x40, IA32 EBP), <dst_hispi”ed to stack
STACK_VAR(dst_hi)); /

EMIT(Ox0, 4); - N

} else 1 JIT control tlow:
. dst_hi mapped to reg
EMIT3(OxC7, add_1lreg(@xCO, dst hi), 0); — )

¥



Example: load 32-bit value from memory (x86)

case BPF_LDX | BPF_MEM | BPF_W:

/

1f (!bpf_prog->aux->verifier_ zext) _—
break;
if (dstk) {

EMIT3(0xC7, add _1reg(@x4@0, IA32 EBP),
STACK _VAR(dst _h1i)):
EMIT(Ox0, 4);
} else {

Bug: inverted check for

\

optimization

)

-

EMIT3(OxC7, add_1lreg(@xCO, dst hi), 0); —

¥

Bug: mov encoding missing

3 bytes of immediate

~

J




Writing correct JITs is difficult

® Must consider multiple levels
® JIT configuration (e.g., optimizations)
® Control flow in both JIT and emitted code
® Semantics of source and target instructions
® Need a specification to rule out bugs
® Restricted form of compiler correctness

® [ntuition: Machine code must behave equivalently to source BPF
program



JIT correctness specification (1/3)

For any safe source program, JIT configuration (e.g., optimizations),
and target program produced by JIT:

safe source program
configuration — JIT compiler

l

target program



JIT correctness specification (2/3)

For any input data, execution of source and target programs produce same

trace and return value
source states & events

source

SO ——= ST —> S2 --.-» Sm —f EWUM
program value

l / y = load(x)

: Input
JIT compiler 4ot ¢

l \ y = load(x)

target return
0 —» 11 —>» T2 :---» Tn —>

program value

target states & events



JIT correctness specification (3/3)

Execution of target program preserves architectural safety

Example: callee-saved registers preserved

: Input
JIT compiler ot

l \ y = load(x)
target

0O — T1 == T2 :---»/ Tn return

prOgram \_/ e

Architectural safety:
A(TO, Tn)



JIT correctness pros & cons

Advantages:
® |ntuitive & effective at preventing bugs
® Tailored for in-kernel execution

Disadvantages:
e Not amenable to automated veritication

(hard to encode to SMT)



Exploit JIT structure: per-instruction translation

Existing JITs in Linux: emit prologue + N x emit insn + emit epilogue

x86 program

push %rbp

emit prologue—

BPF program . .
emlit 1nsn

emlit 1nsn

emit epilogue—

addg %rdi, %rsi

ADD64 REG R1,R2

retq




Breaking down JIT correctness

® Assume per-instruction JIT

® Correctness of each translation step implies JIT correctness

® Amenable to automated verification

JIT correctness

/N

JIT assumptions

Prologue Per-instruction
correctness correctness

Epilogue
correctness
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* L Scaling automated verification

* Ale Requires reasoning about symbolic
machine code produced by JIT

® Prior work works on concrete code

® See paper for details on how to scale

JIT ask /Xe
ess




Developing and verifying the BPF JIT for RISC-V (32-bit)
® \\/ritten in DSL: extracted to C

® Started in 2019, co-developed with specification ana
oroot technique over ~10 months

® [ive iterations of code review; accepted in March 2020

® Automated verification enables catching up with features
(e.g. zero-extension optimization, 100+ opcodes)



Improving existing JITs

® x86 (32- & 64-bit), Arm (32- & 64-bit), RISC-V (64-bit)

® Manually translate C code to DSL; less than 3 weeks each

® Found and fixed 16 new correctness bugs across 10 patches

® Developed and veritied 12 optimization patches

® Demonstrates effectiveness of specification



Conclusion

® Case study of applying formal veritication to BPF JITs in the Linux kernel
® Jitterbug: specification + automated proof strategy
® Developed new BPF JIT for RISC-V (32-bit)
® |Improved existing JITs with bug fixes and optimizations

® Extending automated verification to a restricted class of JIT compilers



