
Specification and verification in the field:
Applying formal methods to BPF just-in-time
compilers in the Linux kernel
Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang
University of Washington

Goal: formally verified (e)BPF JITs in the Linux kernel

• BPF is widely deployed for extending the Linux kernel

• In-kernel JIT compilers translate BPF to machine code
for performance

• Correctness is critical

• Code runs directly in kernel

• Makes decisions throughout kernel

Linux
kernel

BPF program

Application

Packet filtering

Tracing programs

Sandbox policies

…

Recent work on formal verification of systems

• This talk: how to apply formal verification to the BPF JITs in the Linux kernel

fscq

ServalIronclad Apps

• Not designed for verification

• Practical specification of JIT correctness

• Prevents real-world bugs, enables optimizations

Challenges: verifying BPF JITs in the Linux kernel

• Rapidly evolving JITs

• Scale automated verification to JIT compilers

• Catch up with new features being added
• Integration with kernel development

• Write JITs in domain-specific language; extract to C code

• Auditable without requiring formal methods background

Contributions
• Jitterbug: automated formal verification of BPF JITs

• Specification for reasoning about JITs

• Automated proof strategy

• Upstreamed changes in the Linux kernel

• New BPF JIT for RISC-V (32-bit) since v5.7

• Found and fixed new bugs and wrote new optimizations for
existing JITs for x86 (32 & 64-bit), Arm (32 & 64-bit), RISC-V (64-bit)

• Clarification changes in RISC-V instruction-set manual

Contributions
• Jitterbug: automated formal verification of BPF JITs

• Specification for reasoning about JITs (this talk)

• Automated proof strategy (see paper for details)

• Upstreamed changes in the Linux kernel

• New BPF JIT for RISC-V (32-bit) since v5.7

• Found and fixed new bugs and wrote new optimizations for
existing JITs for x86 (32 & 64-bit), Arm (32 & 64-bit), RISC-V (64-bit)

• Clarification changes in RISC-V instruction-set manual

BPF JIT overview: compilation

• Application submits BPF program to
kernel

• In-kernel checker ensures safety of
BPF program

• JIT compiler translates to machine
code

BPF safety checker

BPF program

BPF JIT compiler

Machine code

Application

Linux
kernel

Machine code

BPF JIT overview: run time

Input data Return valuePrologue Body Epilogue

• Behaves like a regular kernel function

• Interacts with kernel through return value, memory accesses, function calls

Kernel memory / Helper functions

Bugs in the BPF JITs in Linux: May 2014— Apr. 2020
• 82 JIT correctness bugs in x86 (32- & 64-bit), Arm (32- & 64-bit), RISC-V (64-bit)

• Bugs in every category of instructions

• Difficult to exhaustively test

Prologue and Epilogue
5

Tail call and EXIT
10

CALL
3

JMP
13

MEM
18 ALU

33

Example: load 32-bit value from memory (x86)
case BPF_LDX | BPF_MEM | BPF_W:
...
/* Emit code to clear high bits */
if (!bpf_prog->aux->verifier_zext)
 break;
if (dstk) {
 /* MOV [ebp+off], 0 */
 EMIT3(0xC7, add_1reg(0x40, IA32_EBP),
 STACK_VAR(dst_hi));
 EMIT(0x0, 4);
} else {
 /* MOV dst_hi, 0 */
 EMIT3(0xC7, add_1reg(0xC0, dst_hi), 0);
}

JIT control flow:
dst_hi spilled to stack

JIT control flow:
dst_hi mapped to reg

Optimization
(analyzed by kernel)

Example: load 32-bit value from memory (x86)
case BPF_LDX | BPF_MEM | BPF_W:
...
/* Emit code to clear high bits */
if (!bpf_prog->aux->verifier_zext)
 break;
if (dstk) {
 /* MOV [ebp+off], 0 */
 EMIT3(0xC7, add_1reg(0x40, IA32_EBP),
 STACK_VAR(dst_hi));
 EMIT(0x0, 4);
} else {
 /* MOV dst_hi, 0 */
 EMIT3(0xC7, add_1reg(0xC0, dst_hi), 0);
}

Bug: mov encoding missing
3 bytes of immediate

Bug: inverted check for
optimization

Writing correct JITs is difficult
• Must consider multiple levels

• JIT configuration (e.g., optimizations)

• Control flow in both JIT and emitted code

• Semantics of source and target instructions

• Need a specification to rule out bugs

• Restricted form of compiler correctness

• Intuition: Machine code must behave equivalently to source BPF
program

JIT correctness specification (1/3)

source program

target program

JIT compilerconfiguration

safe

For any safe source program, JIT configuration (e.g., optimizations),
and target program produced by JIT:

For any input data, execution of source and target programs produce same
trace and return value

T0 T1 T2

y = load(x)

Tn return
value

target states & events

JIT correctness specification (2/3)

source
program

target
program

JIT compiler

source states & events

S0 S1 S2

y = load(x)

Sm return
value

input
data

JIT correctness specification (3/3)

target
program

JIT compiler input
data

T0 T1 T2

y = load(x)

Tn return
value

Architectural safety:
A(T0, Tn)

Execution of target program preserves architectural safety

Example: callee-saved registers preserved

JIT correctness pros & cons

Advantages:
• Intuitive & effective at preventing bugs
• Tailored for in-kernel execution

Disadvantages:
• Not amenable to automated verification
(hard to encode to SMT)

Exploit JIT structure: per-instruction translation

push %rbp
...

...
retq

ADD64_REG R1,R2

addq %rdi, %rsiemit_insn

...
...

emit_prologue

emit_epilogue

x86 program

... ...

emit_insn

emit_insn

BPF program

Existing JITs in Linux: emit_prologue + N × emit_insn + emit_epilogue

Breaking down JIT correctness

JIT correctness

JIT assumptions Prologue
correctness

Per-instruction
correctness

Epilogue
correctness

• Assume per-instruction JIT

• Correctness of each translation step implies JIT correctness

• Amenable to automated verification

Breaking down JIT correctness

JIT correctness

JIT assumptions Prologue
correctness

Per-instruction
correctness

Epilogue
correctness

• Assume per-instruction JIT

• Correctness of each translation step implies JIT correctness

• Amenable to automated verification
Scaling automated verification

• Requires reasoning about symbolic
machine code produced by JIT

• Prior work works on concrete code
• See paper for details on how to scale

Developing and verifying the BPF JIT for RISC-V (32-bit)

•Written in DSL; extracted to C

•Started in 2019, co-developed with specification and
proof technique over ~10 months

•Five iterations of code review; accepted in March 2020

•Automated verification enables catching up with features
(e.g. zero-extension optimization, 100+ opcodes)

Improving existing JITs
• x86 (32- & 64-bit), Arm (32- & 64-bit), RISC-V (64-bit)

• Manually translate C code to DSL; less than 3 weeks each

• Found and fixed 16 new correctness bugs across 10 patches

• Developed and verified 12 optimization patches

• Demonstrates effectiveness of specification

Conclusion

• Case study of applying formal verification to BPF JITs in the Linux kernel

• Jitterbug: specification + automated proof strategy

• Developed new BPF JIT for RISC-V (32-bit)

• Improved existing JITs with bug fixes and optimizations

• Extending automated verification to a restricted class of JIT compilers

