Heterogeneity-Aware Cluster Scheduling
Policies for Deep Learning Workloads

Deepak Narayanans, Keshav Santhanam§, Fiodar Kazhamiakas,
Amar Phanishayee*, Matei Zaharia$

* Microsoft Research § Stanford University

Hardware for ML training is becoming highly
specialized and heterogeneous!

Nvidia GPUs: K80, Google TPU FPGAs in Azure
P100, V100, A100
@erebras SiEelylelsl\ee W GRAFHCORE

...and others

How should we allocate
heterogeneous resources?

O PyTorch

TensorFlow

Training jobs written in
existing frameworks

Objective (e.g., fairness)

}

Scheduler

& & .. V100 GPU

& & .. P100GPU

Heterogeneous
cluster

How should one allocate heterogeneous resources to DL training
jobs from multiple users while optimizing different objectives?

Challenge 1: Heterogeneous performance

« Models and operators (e.g., convolution, attention) perform
differently across hardware architectures
 Disregarding heterogeneity can lead to unfair allocations

B K80 P100 B V100
10+
sge
X 6]
5T 4 %%%% K
€3 2{ O °«’”
0

Transfor mer A3C CycIeGAN ResNet18 ResNet 50

Magnitude of speedup across GPU generations varies significantly

4

Challenge 2: Diverse scheduling objectives

 Single-job objectives: “maximize throughput” or “minimize cost”
« Minimizing cost subject to SLOs involves moving between fast but
expensive, and slow but cheap instances

« Multi-job objectives: fairness or more complicated hierarchical policies

Weighted Organization
fairness Wy W
Product Team Research Team

Fairnefyl\A /\lj IFO

Job 1 Job 2 Job 3 Job4 Job5

Hierarchical policy: Weighted fairness
across sub-organizations, FIFO and fairness within

Related work

« Most existing cluster schedulers for deep learning (e.g., Gandiva [1],
Themis [2], Tiresias [3]) disregard heterogeneity

 AlloX [4] and Gandiva_fair [5] do consider performance heterogeneity, but

tightly couple their target objective to scheduling mechanism
» Average JCT for AlloX, max-min fairness for Gandiva_fair

Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI 2019, Xiao et al.
Themis: Fair and Efficient GPU Cluster Scheduling, NSDI 2020, Mahajan et al.
Tiresias: A GPU Cluster Manager for Distributed Deep Learning, NSDI 2019, Gu et al.
AlloX: Compute Allocation in Hybrid Clusters, EuroSys 2020, Le et al.

Balancing Efficiency and Fairness in Heterogeneous GPU Clusters for Deep Learning,

uroSys 2020, Chaudhary et al.

9D WN =

m

Gavel: A new heterogeneity-aware
cluster scheduler

» Generalizes a wide range of existing scheduling policies by expressing
policies as optimization problems over the allocation

* Provides abstraction to incorporate performance heterogeneity
* Round-based scheduling mechanism ensures jobs receive optimal allocation
* Improves objectives such as average job completion time by 3.5x

If measurements provided by user

O PyTorch

R Throughput

Estimator | Throughput
TensorFlow tensor

A

P : | Scheduling
g Policy . | Mechanism | Per-round J J P100

placement

Training jobs written in
existing frameworks

Throughput measurements from runs fed back into throughput estimator ‘

Outline

- Heterogeneity-aware Policies

* Round-based Scheduling Mechanism

« Evaluation

Scheduling policies to be made
heterogeneity-aware

* FIFO: First in, first out

 Shortest Job First: Minimize time taken by shortest job

« Minimize Makespan: Minimize time taken by batch of jobs

« Minimize cost (w/ SLOs): Minimize total cost in public cloud (subject to SLOs)
 LAS [1]: Max-min fairness by total compute time

« LAS w/ weights: Max-min fairness by total compute time with weights

- Finish Time Fairness [2]: Maximize minimum job speedup

 Hierarchical: Multi-level policy with fairness as top-level policy, and FIFO or fairness
as lower-level policies. Per-job weights can be specified

[1] Tiresias: A GPU Cluster Manager for Distributed Deep Learning, NSDI 2019, Gu et al.
[2] Themis: Fair and Efficient GPU Cluster Scheduling, NSDI 2020, Mahajan et al.

Policies as optimization problems

* |n a homogeneous cluster, policy objectives are functions of throughput
(e.g., duration = training steps / throughput) and allocation

* On a homogeneous cluster, Least Attained Service policy is a max-min
fairness policy that equalizes the total compute time each job receives

« Jobs can see unequal throughput reductions on heterogeneous clusters

Allocations (X) as time fractions

X specifies the fraction of time a job spends on each accelerator between
allocation recomputations

V100 100
V100 P00 K80 Job 0 i

0.6 0.4 0.0\ jobO Job1 P100 V100 | K80
Xe"ampl"’=< 02 0.6 0.2) jobl o —
02 00 08/ job2 °
allocation,, allocation,,; 1
computed computed

Allocations recomputed either at periodic intervals of time, or
on a reset event (new job arrives, or old job completes)

Effective throughput

To make policies heterogeneity-aware, policy objectives can be expressed
in terms of effective throughput (given allocation X and throughputs T):

throughput(job m, X) = z Tinj - Xmj
accelerator
type j

V100 K80

40.0 10.0\ jobO
T is matrix of raw throughputs of ~ _ () 1

| 120 4.0 | job 1l
each job on each accelerator type 100.0 50.0/ job2

Policies as optimization problems

In a homogeneous cluster, policy objectives are functions of throughput
(e.g., duration = training steps / throughput)

On a homogeneous cluster, Least Attained Service policy is a max-min
fairness policy that equalizes the total compute time each job receives

Maximizey min Xm

Jobs can see unequal throughput reductions on heterogeneous clusters

Instead, compute max-min fairness over effective throughputs:

o ~ throughput(m, X)
Maximizey min —
m normalizing_factor,,

Scheduling policies to be made
heterogeneity-aware

* FIFO: First in, first out

 Shortest Job First: Minimize time taken by shortest job

« Minimize Makespan: Minimize time taken by batch of jobs

« Minimize cost (w/ SLOs): Minimize total cost in public cloud (subject to SLOs)
« LAS w/ weights: Max-min fairness by total compute time with weights
 Finish Time Fairness: Maximize minimum job speedup

 Hierarchical: Multi-level policy with fairness as top-level policy, and FIFO or fairness
as lower-level policies. Per-job weights can be specified

See paper for details!

Performance optimizations:
space sharing and placement

» Gavel can also deploy existing performance optimizations like space-
sharing and placement awareness [1, 2] in a heterogeneity-aware way

 Objectives in terms of throughput(m, X) unchanged

« X needs to be modified to account for performance optimization (e.qg.,
allocation for each job combination)

« Raw throughputs (T) for concurrently running applications might need to
be measured / estimated on the fly (see paper for details)

[1] Gandiva: Introspective Cluster Scheduling for Deep Learning, OSDI 2018, Xiao et al.
[2] Themis: Fair and Efficient GPU Cluster Scheduling, NSDI 2020, Mahajan et al.

Outline

* Round-based Scheduling Mechanism

« Evaluation

How do we realize an optimal allocation?

Given an optimal heterogeneity-aware allocation by a policy, how do we
assign resources to jobs?

V100 | P100 | K80

1.0 0.0 0.0\ jobs0+1 ? Assignments of jobs to
(0.0 0.5 0.5) job2 heterogeneous cluster
0.0 05 0.5/ job3 resources

Xhet.+SS

Gavel's round-based scheduling

« Round-based scheduler ensures jobs receive time on accelerator
types according to the computed optimal allocation X

0 0 [o 0
V100 | P100 | K80 V100 1 1 [1 1
1.0 0.0 0.0 jobs0+1
(0.0 0.5 0.5) job2 100 . - : 2
00 05 05/ job3 o) . 2 .
Xhet.+SS

Scheduling rounds

Gavel's round-based scheduling

« Round-based scheduler ensures jobs receive time on accelerator
types according to the computed optimal allocation X

* Priority score for every (job, accelerator) combination
* priorities = X8 /rounds_received (element-wise division of matrices)

V100 | P100 | K80 V100 | P100 | K80
3 1 0 job 0 0.2 0.4 0 job 0
V100 P100 K80 (1 3 0) j:Ob 1 ‘ (02 02 oo) j:Ob 1
0.6 04 0.0\ jobO 0 0 4/ job2 w 0 02/ job2
X example _ (0.2 0.6 ().2> jOb 1 rounds_received,, priorities,,
02 00 08/ job2 /
V100| P100| K80 Jobs placed on resources
3 2 0 jobO where they have high priority
1 3 1 job 1 (marked in red)
1 0 4/ job2

rounds_received,, ,

Outline

« Evaluation

Main questions

Do Gavel's policies improve objective metrics in a heterogeneous cluster?

What is the impact of input load on objectives using Gavel’s policies?

Can Gavel’s policy framework support hierarchical policies?

How do Gavel’s policies scale with the number of active jobs?

Gavel improves objectives
on a heterogeneous cluster

Physical cluster with
8 V100 GPUs,

16 P100 GPUs,

24 K80 GPUs

System Policy Physical Simulated

Heterogeneity-agnostic Least Attained 5.1 hrs 5.4 hrs

Heterogeneity-aware Service 3.4 hrs 3.7 hrs
(average JCT)

Heterogeneity-agnostic Makespan 21.3hrs | 22.1 hrs

(w/ ad hoc space sharing)

Heterogeneity-aware 17.7 hrs | 17.6 hrs

« Gavel reduces average JCT by 1.5x
« Gavel without space sharing reduces makespan by 1.2x compared to a

baseline that uses ad-hoc space sharing
« Results in simulation reflect reality (< 8% difference)

Gavel can enable the same heterogeneous
cluster to support higher input load

— Gavel w/ SS

Shorter CDF tail

3.5X better
—e— LAS average JCT —=- LAS Gavel
100 - ! .
Gavel ¢ : |
3 75 --m- Gavel w/ SS / ol oo
= ’(7)\ 4 : '
Q -
g3 0 / :
5 < d g
= 257 g-ATATATA=eTS=a-a-e-s. peatn-uon m 024
0 - ' . ngher input | |
’ ?) ® job rate "o 100 200

Input job rate (jobs/hr)

JCT (hrs)

300

JCT CDF (input job rate = 5.6 jobs/hr)

« Simulated cluster with 36 V100 GPUs, 36 P100 GPUs, 36 K80 GPUs
« Each policy evaluated on multiple traces (different Poisson arrival rates)

23

Gavel can support hierarchical policies

Organization

Weighted fairness /l\

at both levels Entity 0 Entity 1 Entity 2

Wentity o = 1 Wentity 1 = 2 Wentity 2 = 3

Job0 Job1 Job?2

« Six jobs per entity

Wentity 0 < Wentity 1 < Wentity 2
Wentity 1 = 2 implies that entity 1 should get 2x resources as entity 0

Gavel can support hierarchical policies

BB Entity0 BEEE Entity 1 Entity 2

— é_ 1.0
55
© _g Allocation
c %+ 0.5 in ratio of
O o .9.
© = 3:2:1
© O
T
o 0.0

10 20 30 40 50 60 70
Timestep

Widths of bars indicate that inter- and
intra-entity weights are respected 25

Gavel scales to clusters with hundreds
of active jobs

—o— (Gavel Gavel w/ SS
512 - 512 -

64 1 64 1 A
I I 64 second
s | & | o seconas
8 . < 0.13 seconds 3 _ / :

3 : 3 —" for 2k jobs
0195 for 2k jobs n1oel "
. i -0 ") S
o—®
T “'./l T T T T
32 128 512 2048 32 128 512 2048
Number of jobs Number of jobs
(a) LAS. (b) Hierarchical.

Gavel can compute heterogeneity-aware
allocations over 2048 jobs in a minute

26

Main questions

« How well does Gavel's scheduling mechanism realize optimal allocations?

« What is the overhead of preemption in Gavel?

More results (including more objectives) in paper!

Conclusion

» Gavel is a heterogeneity-aware cluster scheduler able to optimize for many
high-level objectives such as fairness, makespan, and cost

» Gavel formulates existing policies as optimization problems, and extends
these optimization problems to be heterogeneity-aware

« Gavel can reduce average job completion time by 3.5

Code open sourced at https://github.com/stanford-futuredata/gavel

https://cs.stanford.edu/~deepakn/ deepakn@stanford.edu

