
Hummingbird: A Tensor Compiler for Unified
Machine Learning Prediction Serving

Supun Nakandalau, Karla Saurm, Gyeong-In Yus, Konstantinos
Karanasosm, Carlo Curinom, Markus Weimerm, Matteo Intelandim

Machine Learning Prediction Serving

!2

ML prediction serving has emerged as an important systems problem.
High throughput, low latency, engineering concerns (e.g., maintainability)

Machine Learning Prediction Serving

!2

ML prediction serving has emerged as an important systems problem.
High throughput, low latency, engineering concerns (e.g., maintainability)

Responsible for 45%-65% of the total cost of ownership of ML solutions.

 source: “The Total Cost of Ownership of Amazon SageMaker”

Machine Learning Prediction Serving

!2

ML prediction serving has emerged as an important systems problem.
High throughput, low latency, engineering concerns (e.g., maintainability)

Specialized systems have been developed.

Responsible for 45%-65% of the total cost of ownership of ML solutions.

 source: “The Total Cost of Ownership of Amazon SageMaker”

Machine Learning Prediction Serving

!2

ML prediction serving has emerged as an important systems problem.
High throughput, low latency, engineering concerns (e.g., maintainability)

Specialized systems have been developed. Focus: Deep Learning (DL)

Responsible for 45%-65% of the total cost of ownership of ML solutions.

 source: “The Total Cost of Ownership of Amazon SageMaker”

Traditional Machine Learning in the Enterprises

!3

Traditional Machine Learning in the Enterprises

!3

Powered By: Traditional Machine Learning

Traditional Machine Learning in the Enterprises

!3

Predictive Maintenance

Powered By: Traditional Machine Learning

Traditional Machine Learning in the Enterprises

!3

Predictive Maintenance Supply-chain Optimizations

Powered By: Traditional Machine Learning

Traditional Machine Learning in the Enterprises

!3

Predictive Maintenance Supply-chain Optimizations Customer Churn Prediction

Powered By: Traditional Machine Learning

Traditional Machine Learning in the Enterprises

!3

Predictive Maintenance Supply-chain Optimizations Customer Churn Prediction

Powered By: Traditional Machine Learning

50%-95% of all ML applications in an organization are based on Traditional ML

 source: “The Total Cost of Ownership of Amazon SageMaker”

Problem: Lack of Optimized Systems for
Traditional ML Serving

!4

Systems for training traditional ML models are not optimized for serving.

Problem: Lack of Optimized Systems for
Traditional ML Serving

!4

Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using imperative code in an ad-hoc
fashion, not using a shared logical abstraction.

Problem: Lack of Optimized Systems for
Traditional ML Serving

!4

Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using imperative code in an ad-hoc
fashion, not using a shared logical abstraction.

Problem: Lack of Optimized Systems for
Traditional ML Serving

!4

Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using imperative code in an ad-hoc
fashion, not using a shared logical abstraction.

?

Problem: Lack of Optimized Systems for
Traditional ML Serving

!4

Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using imperative code in an ad-hoc
fashion, not using a shared logical abstraction.

Highly complex solutions, amplified engineering costs, and reduced operational
performance.

?

Proposed Approach: Reuse DL Prediction Serving
Systems for Traditional ML Serving

!5

Hummingbird, a system that can execute traditional ML models
on DL prediction serving systems.

Proposed Approach: Reuse DL Prediction Serving
Systems for Traditional ML Serving

!5

Hummingbird, a system that can execute traditional ML models
on DL prediction serving systems.

Benefits: Up to 1200x speedups for predictive pipelines against
state-of-the-art frameworks.

Proposed Approach: Reuse DL Prediction Serving
Systems for Traditional ML Serving

!5

Hummingbird, a system that can execute traditional ML models
on DL prediction serving systems.

Benefits: Up to 1200x speedups for predictive pipelines against
state-of-the-art frameworks.

Seamless hardware acceleration w/ up to 3x speedups
compared hand-crafted GPU kernels.

Proposed Approach: Reuse DL Prediction Serving
Systems for Traditional ML Serving

!5

Hummingbird, a system that can execute traditional ML models
on DL prediction serving systems.

Significantly reduced engineering efforts and software
complexity. Increased Portability.

Benefits: Up to 1200x speedups for predictive pipelines against
state-of-the-art frameworks.

Seamless hardware acceleration w/ up to 3x speedups
compared hand-crafted GPU kernels.

Outline

!6

1. Background

2. Our System: Hummingbird

3. Experimental Evaluation

Traditional Machine Learning

Deep Learning (DL) and Systems for DL Prediction Serving

Traditional Machine Learning

!7

Traditional Machine Learning

!7

Predictive pipelines (DAGs) composed of featurization and model operators.

Traditional Machine Learning

!7

Predictive pipelines (DAGs) composed of featurization and model operators.

Data

ValueImputer
(strategy:constant)

ValueImputer
(strategy:mean) StandardScaler

OneHotEncoder TruncatedSVD

RandomForest
Model

numerical

features

categorical

features

Traditional Machine Learning

!7

Predictive pipelines (DAGs) composed of featurization and model operators.

Data

ValueImputer
(strategy:constant)

ValueImputer
(strategy:mean) StandardScaler

OneHotEncoder TruncatedSVD

RandomForest
Model

numerical

features

categorical

features

Operators are expressed using imperative code.

Traditional Machine Learning

!7

Predictive pipelines (DAGs) composed of featurization and model operators.

Data

ValueImputer
(strategy:constant)

ValueImputer
(strategy:mean) StandardScaler

OneHotEncoder TruncatedSVD

RandomForest
Model

numerical

features

categorical

features

Can contain 10s of operators selected from 100s of potential featurization
and model operators.

Operators are expressed using imperative code.

Outline

!8

1. Background

2. Our System: Hummingbird

3. Experimental Evaluation

Traditional Machine Learning

Deep Learning (DL) and Systems for DL Prediction Serving

Primarily relies on the abstraction of tensors.

Deep Learning

!9

Primarily relies on the abstraction of tensors.

Deep Learning

!9

DL models are expressed as a DAG of tensor operators.

w1 b1

X MatMul Add ReLU MatMul Add Sigmoid

w1 b1

User

Input

Primarily relies on the abstraction of tensors.

Deep Learning

!9

DL models are expressed as a DAG of tensor operators.

w1 b1

X MatMul Add ReLU MatMul Add Sigmoid

w1 b1

User

Input

Can contain 100s of operators with often 10s of unique operator types.

Systems for DL Prediction Serving

!10

Exploit the abstraction of tensor operations to support multiple DL frameworks on
multiple target environments.

Systems for DL Prediction Serving

!10

Exploit the abstraction of tensor operations to support multiple DL frameworks on
multiple target environments.

MatMul Add ReLU …

Systems for DL Prediction Serving

!10

Exploit the abstraction of tensor operations to support multiple DL frameworks on
multiple target environments.

MatMul Add ReLU …

Systems for DL Prediction Serving

!10

Exploit the abstraction of tensor operations to support multiple DL frameworks on
multiple target environments.

MatMul Add ReLU …

Systems for DL Prediction Serving

!10

Exploit the abstraction of tensor operations to support multiple DL frameworks on
multiple target environments.

MatMul Add ReLU …

Benefits: Target-independent and target-
dependent optimization in a
single place.

Systems for DL Prediction Serving

!10

Exploit the abstraction of tensor operations to support multiple DL frameworks on
multiple target environments.

MatMul Add ReLU …

Significantly reduced engineering

efforts. Increased Portability.

Benefits: Target-independent and target-
dependent optimization in a
single place.

Outline

!11

1. Background

2. Our System: Hummingbird

3. Experimental Evaluation

Main Idea: Compile Traditional ML Operators into Tensor Operators

Example: Compiling Decision Tree-based Models

High-level System Architecture

Main Idea: Compile Traditional ML Operators into
Tensor Operators

!12

Main Idea: Compile Traditional ML Operators into
Tensor Operators

!12

Focus: Traditional ML pipelines trained on structured data.

Main Idea: Compile Traditional ML Operators into
Tensor Operators

!12

Focus: Traditional ML pipelines trained on structured data.

Observation: Once trained, each operator can be represented as a transformation
function that transforms input features into output features/score.

Main Idea: Compile Traditional ML Operators into
Tensor Operators

!12

Focus: Traditional ML pipelines trained on structured data.

Observation: Once trained, each operator can be represented as a transformation
function that transforms input features into output features/score.

Often much simpler than the algorithm used during training.

Main Idea: Compile Traditional ML Operators into
Tensor Operators

!12

Focus: Traditional ML pipelines trained on structured data.

Observation: Once trained, each operator can be represented as a transformation
function that transforms input features into output features/score.

Often much simpler than the algorithm used during training.

Algebraic Operations: E.g., Linear Regression

Algorithmic Operations: E.g., RandomForest, OneHotEncoder

Y = wX + b

Main Idea: Compile Traditional ML Operators into
Tensor Operators

!12

Focus: Traditional ML pipelines trained on structured data.

Observation: Once trained, each operator can be represented as a transformation
function that transforms input features into output features/score.

Often much simpler than the algorithm used during training.

Algebraic Operations: E.g., Linear Regression

Algorithmic Operations: E.g., RandomForest, OneHotEncoder

Y = wX + b

Main Idea: Compile Traditional ML Operators into
Tensor Operators

!12

Focus: Traditional ML pipelines trained on structured data.

Observation: Once trained, each operator can be represented as a transformation
function that transforms input features into output features/score.

Often much simpler than the algorithm used during training.

Algebraic Operations: E.g., Linear Regression

Algorithmic Operations: E.g., RandomForest, OneHotEncoder

Y = wX + b

Complex data access patterns and control-flow patterns!

Main Idea: Compile Traditional ML Operators into
Tensor Operators

!13

Problem: How to compile algorithmic operators into tensor operators?

Main Idea: Compile Traditional ML Operators into
Tensor Operators

!13

Problem: How to compile algorithmic operators into tensor operators?

Introduce redundancies, both computational and storage, and
make the data access patterns and control flow uniform for all inputs.

Our Solution:

Main Idea: Compile Traditional ML Operators into
Tensor Operators

!13

Problem: How to compile algorithmic operators into tensor operators?

Introduce redundancies, both computational and storage, and
make the data access patterns and control flow uniform for all inputs.

Our Solution:

Depending on the level of redundancy introduced there can be

more than one potential compilation approach.

Hummingbird picks the one that works best for the target setting.

Outline

!14

1. Background

2. Our System: Hummingbird

3. Experimental Evaluation

Main Idea: Compile Traditional ML Operators into Tensor Operators

Example: Compiling Decision Tree-based Models

High-level System Architecture

Compiling Decision Tree-based Models

!15

F3 < 0.5

F2 < 2.0 F5 < 5.5

C1 C2 C1F3 < 2.4

C2 C1

I1

I2 I3

I4

L1 L2

L3 L4

L5

true false

true true

true

false false

false

0.1 4.5 1.9 10.1 3.5

F1

F (Feature Vector)

F2 F3 F4 F5

Compiling Decision Tree-based Models

!15

F3 < 0.5

F2 < 2.0 F5 < 5.5

C1 C2 C1F3 < 2.4

C2 C1

I1

I2 I3

I4

L1 L2

L3 L4

L5

true false

true true

true

false false

false

0.1 4.5 1.9 10.1 3.5

F1

F (Feature Vector)

F2 F3 F4 F5

A

0 0 0 0

0 1 0 0

1 0 0 1

0 0 0 0

0 0 1 0

A ∈ ℝ|F|×|I|

Ai,j = {1, Ij evaluates Fi

0, otherwise

0.5 2.0 5.5 2.4

B

Compiling Decision Tree-based Models

!15

F3 < 0.5

F2 < 2.0 F5 < 5.5

C1 C2 C1F3 < 2.4

C2 C1

I1

I2 I3

I4

L1 L2

L3 L4

L5

true false

true true

true

false false

false

0.1 4.5 1.9 10.1 3.5

F1

F (Feature Vector)

F2 F3 F4 F5

A

0 0 0 0

0 1 0 0

1 0 0 1

0 0 0 0

0 0 1 0

A ∈ ℝ|F|×|I|

Ai,j = {1, Ij evaluates Fi

0, otherwise

0.5 2.0 5.5 2.4

B
B ∈ ℝ|I|

Bj = ThresholdValue(Ij)

Compiling Decision Tree-based Models

!16

F3 < 0.5

F2 < 2.0 F5 < 5.5

C1 C2 C1F3 < 2.4

C2 C1

I1

I2 I3

I4

L1 L2

L3 L4

L5

true false

true true

true

false false

false

0.1 4.5 1.9 10.1 3.5

F1

F (Feature Vector)

F2 F3 F4 F5

1 1 -1 -1 -1

1 -1 0 0 0

0 0 1 1 -1

0 0 1 -1 0

C ∈ ℝ|I|×|L|

Ci,j =
−1, Lj ∈ RightSubTree(Ii)
1, Lj ∈ LeftSubTree(Ii)
0, otherwise

C

2 1 2 1 0

D

Compiling Decision Tree-based Models

!16

F3 < 0.5

F2 < 2.0 F5 < 5.5

C1 C2 C1F3 < 2.4

C2 C1

I1

I2 I3

I4

L1 L2

L3 L4

L5

true false

true true

true

false false

false

0.1 4.5 1.9 10.1 3.5

F1

F (Feature Vector)

F2 F3 F4 F5

1 1 -1 -1 -1

1 -1 0 0 0

0 0 1 1 -1

0 0 1 -1 0

C ∈ ℝ|I|×|L|

Ci,j =
−1, Lj ∈ RightSubTree(Ii)
1, Lj ∈ LeftSubTree(Ii)
0, otherwise

C

2 1 2 1 0

D

D ∈ ℝ|L|

Dj = ∑
k∈Lj

pathRoot

1(k = = LeftChild(Parent(k)))

Compiling Decision Tree-based Models

!17

0.1 4.5 1.9 10.1 3.5

F1

F (Feature Vector)

F2 F3 F4 F5 0 0 0 0

0 1 0 0

1 0 0 1

0 0 0 0

0 0 1 0

A

X

Compiling Decision Tree-based Models

!17

0.1 4.5 1.9 10.1 3.5

F1

F (Feature Vector)

F2 F3 F4 F5 0 0 0 0

0 1 0 0

1 0 0 1

0 0 0 0

0 0 1 0

A

X = 1.9 4.6 0.1 10.1

Compiling Decision Tree-based Models

!17

0.1 4.5 1.9 10.1 3.5

F1

F (Feature Vector)

F2 F3 F4 F5 0 0 0 0

0 1 0 0

1 0 0 1

0 0 0 0

0 0 1 0

A

X = 1.9 4.6 0.1 10.1

1.9 4.6 0.1 10.1 == 0.5 2.0 5.5 2.4

B

Compiling Decision Tree-based Models

!17

0.1 4.5 1.9 10.1 3.5

F1

F (Feature Vector)

F2 F3 F4 F5 0 0 0 0

0 1 0 0

1 0 0 1

0 0 0 0

0 0 1 0

A

X = 1.9 4.6 0.1 10.1

1.9 4.6 0.1 10.1 == 0.5 2.0 5.5 2.4

B I1

= 0 0 1 1

I2 I3 I4

Compiling Decision Tree-based Models

!18

C

X

I1

0 0 1 1

I2 I3 I4 1 1 -1 -1 -1

1 -1 0 0 0

0 0 1 1 -1

0 0 1 -1 0

Compiling Decision Tree-based Models

!18

C

X = 0 0 1 1 -1

I1

0 0 1 1

I2 I3 I4 1 1 -1 -1 -1

1 -1 0 0 0

0 0 1 1 -1

0 0 1 -1 0

Compiling Decision Tree-based Models

!18

C

X = 0 0 1 1 -1

I1

0 0 1 1

I2 I3 I4 1 1 -1 -1 -1

1 -1 0 0 0

0 0 1 1 -1

0 0 1 -1 0

==

D

2 1 2 1 00 0 1 1 -1

Compiling Decision Tree-based Models

!18

C

X = 0 0 1 1 -1

I1

0 0 1 1

I2 I3 I4 1 1 -1 -1 -1

1 -1 0 0 0

0 0 1 1 -1

0 0 1 -1 0

==

D

2 1 2 1 00 0 1 1 -1

= 0 0 0 1 0

L1 L2 L3 L4 L5

Compiling Decision Tree-based Models

!18

C

X = 0 0 1 1 -1

I1

0 0 1 1

I2 I3 I4 1 1 -1 -1 -1

1 -1 0 0 0

0 0 1 1 -1

0 0 1 -1 0

==

D

2 1 2 1 00 0 1 1 -1

= 0 0 0 1 0

L1 L2 L3 L4 L5

This technique can be easily adopted for tree-ensembles by batching individual tensors for each tree.

Compiling Decision Tree-based Models

!19

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

Compiling Decision Tree-based Models

!19

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

Encoding tree structure using tensors introduce storage redundancy.

Compiling Decision Tree-based Models

!19

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

Compiling Decision Tree-based Models

!19

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

Two other tree traversal-based methods that exploit the tree structure.

For tall trees (e.g., LightGBM)
TreeTraversal

For bushy trees (e.g., XGBoost)
PerfectTreeTraversal

Compiling Decision Tree-based Models

!19

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

More details about these methods and a summary of techniques used to compile 40+ Scikit-Learn ops can be found in our paper.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

Two other tree traversal-based methods that exploit the tree structure.

For tall trees (e.g., LightGBM)
TreeTraversal

For bushy trees (e.g., XGBoost)
PerfectTreeTraversal

Outline

!20

1. Background

2. Our System: Hummingbird

3. Experimental Evaluation

Main Idea: Compile Traditional ML Operators into Tensor Operators

Example: Compiling Decision Tree-based Models

High-level System Architecture

High-level System Architecture

!21

Pipeline Parser

Optimizer

Tensor DAG Compiler
Hummingbird

High-level System Architecture

!21

Pipeline Parser

Optimizer

Tensor DAG Compiler
Hummingbird

ONNX-ML

Trained
Traditional

ML Pipelines

High-level System Architecture

!21

Pipeline Parser

Optimizer

Tensor DAG Compiler
Hummingbird

ONNX-ML

Trained
Traditional

ML Pipelines

Optimizations:
Heuristics-based strategy selection
Feature selection push-down
Algebraic rewrites
Batching stacked models
(More details in our paper)

High-level System Architecture

!21

Pipeline Parser

Optimizer

Tensor DAG Compiler
Hummingbird

ONNX-ML

Trained
Traditional

ML Pipelines

PyTorch/TorchScript

DL Prediction
Serving Systems

Optimizations:
Heuristics-based strategy selection
Feature selection push-down
Algebraic rewrites
Batching stacked models
(More details in our paper)

High-level System Architecture

!21

Pipeline Parser

Optimizer

Tensor DAG Compiler
Hummingbird

ONNX-ML

Trained
Traditional

ML Pipelines

PyTorch/TorchScript

DL Prediction
Serving Systems

Optimizations:
Heuristics-based strategy selection
Feature selection push-down
Algebraic rewrites
Batching stacked models
(More details in our paper)

TF XLA

!22

MatMul Add ReLU …

Deep
Learning

Traditional
ML

DL Prediction
Serving Systems

Hummingbird

!22

MatMul Add ReLU …

Deep
Learning

Traditional
ML

DL Prediction
Serving Systems

Outline

!23

1. Background

2. Our System: Hummingbird

3. Experimental Evaluation

End-to-End Pipeline Evaluation

!24

Hardware Setup
Azure NC6 v2 machine

Intel Xeon E5-2690

v4@ 2.6GHz (6 cores)

112 GB RAM

Nvidia P100 Ubuntu 18.04,

PyTorch 1.3, TVM 0.6, CUDA 10,

RAPIDS 0.9

End-to-End Pipeline Evaluation

!24

Hardware Setup Experimental Workload

Hummingbird can translate 2328 pipelines (88%).

Perform inference on 20% of the dataset.

TorchScript as the backend for Hummingbird.

Scikit-Learn pipelines for OpenML-CC18
benchmark which has 72 datasets.

Azure NC6 v2 machine

Intel Xeon E5-2690

v4@ 2.6GHz (6 cores)

112 GB RAM

Nvidia P100 Ubuntu 18.04,

PyTorch 1.3, TVM 0.6, CUDA 10,

RAPIDS 0.9

End-to-End Pipeline Evaluation

!25

CPU

End-to-End Pipeline Evaluation

!25

CPU

60%

End-to-End Pipeline Evaluation

!25

CPU

60%

1200 X60 X

End-to-End Pipeline Evaluation

!26

CPU GPU

60%

1200 X60 X

End-to-End Pipeline Evaluation

!26

CPU GPU

60%

1200 X60 X

73%

End-to-End Pipeline Evaluation

!26

CPU GPU

60%

1200 X60 X

73%

1000 X130 X

End-to-End Pipeline Evaluation

!26

CPU GPU

60%

1200 X60 X

73%

1000 X130 X

Main reasons for slowdowns: Sparse input data, small inference datasets.

Tree-Models Microbenchmark

!27

Experimental Workload: Nvidia Gradient Boosting Algorithm Benchmark*

Dataset Rows #Features Task

Fraud 285k 28 BinaryClass

Year 512k 90 Regression

Covtype 581k 54 MultiClass

Epsilon 500k 2000 BinaryClass

(* https://github.com/NVIDIA/gbm-bench)

Tree-Models Microbenchmark

!27

Experimental Workload: Nvidia Gradient Boosting Algorithm Benchmark*

Dataset Rows #Features Task

Fraud 285k 28 BinaryClass

Year 512k 90 Regression

Covtype 581k 54 MultiClass

Epsilon 500k 2000 BinaryClass

3 Models: RandomForest, XGBoost, LightGBM.

80/20 train/test split.

Batch inference (batch size 10k w/ and w/o
GPU.

(* https://github.com/NVIDIA/gbm-bench)

Tree-Models Microbenchmark

!28

Algorithm Dataset Sklearn
(CPU Baseline)

Hummingbird (CPU) RAPIDS
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud

Year

Covtype

Epsilon

LightGBM

Fraud

Year

Covtype

Epsilon

XGBoost

Fraud

Year

Covtype

Epsilon
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

Tree-Models Microbenchmark

!29

Algorithm Dataset Sklearn
(CPU Baseline)

Hummingbird (CPU) RAPIDS
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud 2.5 7.8 3.0

Year 1.9 7.7 1.4

Covtype 5.9 16.5 6.8

Epsilon 9.8 13.9 6.6

LightGBM

Fraud 3.4 7.6 1.7

Year 5.0 7.6 1.6

Covtype 51.1 79.5 27.2
Epsilon 10.5 14.5 4.0

XGBoost

Fraud 1.9 7.6 1.6

Year 3.1 7.6 1.6

Covtype 42.3 79.0 26.4

Epsilon 7.6 14.8 4.2
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

Tree-Models Microbenchmark

!29

Algorithm Dataset Sklearn
(CPU Baseline)

Hummingbird (CPU) RAPIDS
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud 2.5 7.8 3.0

Year 1.9 7.7 1.4

Covtype 5.9 16.5 6.8

Epsilon 9.8 13.9 6.6

LightGBM

Fraud 3.4 7.6 1.7

Year 5.0 7.6 1.6

Covtype 51.1 79.5 27.2
Epsilon 10.5 14.5 4.0

XGBoost

Fraud 1.9 7.6 1.6

Year 3.1 7.6 1.6

Covtype 42.3 79.0 26.4

Epsilon 7.6 14.8 4.2
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

Tree-Models Microbenchmark

!29

Algorithm Dataset Sklearn
(CPU Baseline)

Hummingbird (CPU) RAPIDS
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud 2.5 7.8 3.0

Year 1.9 7.7 1.4

Covtype 5.9 16.5 6.8

Epsilon 9.8 13.9 6.6

LightGBM

Fraud 3.4 7.6 1.7

Year 5.0 7.6 1.6

Covtype 51.1 79.5 27.2
Epsilon 10.5 14.5 4.0

XGBoost

Fraud 1.9 7.6 1.6

Year 3.1 7.6 1.6

Covtype 42.3 79.0 26.4

Epsilon 7.6 14.8 4.2
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

Tree-Models Microbenchmark

!30

Algorithm Dataset Sklearn
(CPU Baseline)

Hummingbird (CPU) RAPIDS
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud 2.5 7.8 3.0 !SUPPORTED 0.044 0.015

Year 1.9 7.7 1.4 !SUPPORTED 0.045 0.026

Covtype 5.9 16.5 6.8 !SUPPORTED 0.110 0.047
Epsilon 9.8 13.9 6.6 !SUPPORTED 0.130 0.13

LightGBM

Fraud 3.4 7.6 1.7 0.014 0.044 0.014

Year 5.0 7.6 1.6 0.023 0.045 0.025

Covtype 51.1 79.5 27.2 !SUPPORTED 0.620 0.250
Epsilon 10.5 14.5 4.0 0.150 0.130 0.120

XGBoost

Fraud 1.9 7.6 1.6 0.013 0.044 0.015

Year 3.1 7.6 1.6 0.022 0.045 0.026

Covtype 42.3 79.0 26.4 !SUPPORTED 0.620 0.250

Epsilon 7.6 14.8 4.2 0.150 0.130 0.120
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

Tree-Models Microbenchmark

!30

Algorithm Dataset Sklearn
(CPU Baseline)

Hummingbird (CPU) RAPIDS
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud 2.5 7.8 3.0 !SUPPORTED 0.044 0.015

Year 1.9 7.7 1.4 !SUPPORTED 0.045 0.026

Covtype 5.9 16.5 6.8 !SUPPORTED 0.110 0.047
Epsilon 9.8 13.9 6.6 !SUPPORTED 0.130 0.13

LightGBM

Fraud 3.4 7.6 1.7 0.014 0.044 0.014

Year 5.0 7.6 1.6 0.023 0.045 0.025

Covtype 51.1 79.5 27.2 !SUPPORTED 0.620 0.250
Epsilon 10.5 14.5 4.0 0.150 0.130 0.120

XGBoost

Fraud 1.9 7.6 1.6 0.013 0.044 0.015

Year 3.1 7.6 1.6 0.022 0.045 0.026

Covtype 42.3 79.0 26.4 !SUPPORTED 0.620 0.250

Epsilon 7.6 14.8 4.2 0.150 0.130 0.120
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

Summary

!31

Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.

Summary

!31

Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.

Compiles traditional ML pipelines into tensor computations and thereby reuse DL
prediction serving systems for traditional ML prediction serving.

Summary

!31

Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.

Compiles traditional ML pipelines into tensor computations and thereby reuse DL
prediction serving systems for traditional ML prediction serving.

Open sourced and part of PyTorch eco-system and ONNX converters. Support for
more traditional ML training frameworks and target DL prediction serving runtimes
is in the pipeline.

Summary

!31

Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.

Compiles traditional ML pipelines into tensor computations and thereby reuse DL
prediction serving systems for traditional ML prediction serving.

Open sourced and part of PyTorch eco-system and ONNX converters. Support for
more traditional ML training frameworks and target DL prediction serving runtimes
is in the pipeline.

Thank You!
https://github.com/microsoft/hummingbird

hummingbird-dev@microsoft.com

