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50%-95% of all ML applications in an organization are based on Traditional ML
source: “The Total Cost of Ownership of Amazon SageMaker”
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Problem: Lack of Optimized Systems for
Traditional ML Serving

Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using imperative code in an ad-hoc
fashion, not using a shared logical abstraction.

Highly complex solutions, amplified engineering costs, and reduced operational
performance.
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Proposed Approach: Reuse DL Prediction Serving
Systems for Traditional ML Serving

Benefits:

Hummingbird, a system that can execute traditional ML models
on DL prediction serving systems.

Up to 1200x speedups for predictive pipelines against
state-of-the-art frameworks.

Seamless hardware acceleration w/ up to 3x speedups
compared hand-crafted GPU kernels.

Significantly reduced engineering efforts and software
complexity. Increased Portabillity.
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Predictive pipelines (DAGs) composed of featurization and model operators.

categorical
features Valuelmputer
4> (strategy:constant) mmmmmmg OneHotEncoder TruncatedSVD \

. Valuelmputer /
numerical e — StandardScale

features

RandomForest
Model

Operators are expressed using imperative code.

Can contain 10s of operators selected from 100s of potential featurization
and model operators.
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Primarily relies on the abstraction of tensors. 1 B:l B i:l E % Ez 423|

Scalar Vector Matrix Tensor

DL models are expressed as a DAG of tensor operators.

MatMul MatMul Add —@

Can contain 100s of operators with often 10s of unique operator types.
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Exploit the abstraction of tensor operations to support multiple DL frameworks on

multiple target environments.
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Benefits:

Target-independent and target-
dependent optimization in a
single place.

Significantly reduced engineering
efforts. Increased Portability.
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Focus: Traditional ML pipelines trained on structured data.

Once trained, each operator can be represented as a transformation

Observation: function that transforms input features into output features/score.

Often much simpler than the algorithm used during training.

Algebraic Operations: E.g., Linear Regression Y =wX +Db

Algorithmic Operations: E.g., RandomForest, OneHotEncoder
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Complex data access patterns and control-flow patterns!
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Main ldea: Compile Traditional ML Operators into

Problem:

Our Solution:

Tensor Operators

How to compile algorithmic operators into tensor operators?

Introduce redundancies, both computational and storage, and
make the data access patterns and control flow uniform for all inputs.

Depending on the level of redundancy introduced there can be
more than one potential compilation approach.

Hummingbird picks the one that works best for the target setting.
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Compiling Decision Tree-based Models

This technigue can be easily adopted for tree-ensembles by batching individual tensors for each tree.
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Works surprisingly well on modern hardware for many cases!

Two other tree traversal-based methods that exploit the tree structure.
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Compiling Decision Tree-based Models

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

Two other tree traversal-based methods that exploit the tree structure.

N
TreeTraversal N PerfectlreeTraversal
For tall trees (e.g., LightGBM) P For bushy trees (e.g., XGBoost) / \ VARN
"

More details about these methods and a summary of techniques used to compile 40+ Scikit-Learn ops can be found in our paper. 19
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End-to-End Pipeline Evaluation

Hardware Setup

Azure NC6 v2 machine

0 ¢

Intel Xeon E5-2690
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“

@@ D

Nvidia P100 Ubuntu 18.04,
PyTorch 1.3, TVM 0.6, CUDA 10,
RAPIDS 0.9
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End-to-End Pipeline Evaluation

Hardware Setup Experimental Workload

Azure NC6 v2 machine

Scikit-Learn pipelines for OpenML-CC18

D & benchmark which has 72 datasets.

Hummingbird can translate 2328 pipelines (88%).
Intel Xeon E5-2690 112 GB RAM

v4@ 2.6GHz (6 cores)
\‘

@@ D

Nvidia P100 Ubuntu 18.04,
PyTorch 1.3, TVM 0.6, CUDA 10,
RAPIDS 0.9 o

Perform inference on 20% of the dataset.

TorchScript as the backend for Hummingbird.
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Dataset

Fraud

Year

Covtype

Epsilon

Tree-Models Microbenchmark

Rows #Features Task

285k 28 BinaryClass
512k 90 Regression
581k 54 MultiClass

500k 2000 BinaryClass

(* https://github.com/NVIDIA/gbm-bench)

Experimental Workload: Nvidia Gradient Boosting Algorithm Benchmark®
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Tree-Models Microbenchmark

Experimental Workload: Nvidia Gradient Boosting Algorithm Benchmark®

Dataset Rows #Features Task

3 Models: RandomForest, XGBoost, LightGBM.

Fraud 285K 28 BinaryClass

80/20 train/test split.
Year 512k 90 Regression

Covtype BRI:EI% 54 MultiClass CBaeFt)thjh inference (batch size 10k w/ and w/o

Epsilon REsele] 2000 BinaryClass

(* https://github.com/NVIDIA/gbm-bench) -



Tree-Models Microbenchmark

Hummingbird (CPU) RAPIDS Hummingbird (GPU)

Sklearn
(CPU Baseline} TorchScript TVM (GPU Baseline) TorchScript TVM

Algorithm Dataset

Fraud
Year
Rand. Forest
Covtype

Epsilon

Fraud

Year
LightGBM
Covtype

Epsilon

Fraud
Year
XGBoost
Covtype

Epsilon

(All runtimes are reported in seconds. More datasets and experimental results in the paper.)
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Fraud 2.5 7.8 3.0
Year 1.9 (.7 1.4
Covtype 5.9 16.5 6.8
Epsilon 0.8 13.9 6.6
Fraud 3.4 [.6 1.7
Year 5.0 /.6 1.6
Covtype 51.1 79.5 27.2
Epsilon 10.5 14.5 4.0
Fraud 1.9 /.6 1.6
Year 3.1 /.6 1.6
Covtype 42.3 79.0 26.4

Epsilon /.6 14.8 4.2
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Covtype 51.1 79.5 27.2
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Algorithm

Rand. Forest

LightGBM

XGBoost

Tree-Models Microbenchmark

Sklearn
(CPU Baseline) TorchScript TVM (GPU Baseline) TorchScript

Fraud 2.5 /.8 3.0
Year 1.9 (.7 1.4
Covtype 5.9 16.5 6.8
Epsilon 0.8 13.9 6.6

Dataset

Hummingbird (CPU) RAPIDS Hummingbird (GPU)

TVM

Fraud 3.4 [.6 1.7

Year 5.0 /.6 1.6
Covtype 51.1 79.5 27.2
Epsilon 10.5 14.5 4.0

Fraud 1.9 /.6 1.6
Year 3.1 7.6 1.6
Covtype 42.3 79.0 26.4

Epsilon /.6 14.8 4.2
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)
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Tree-Models Microbenchmark

Hummingbird (CPU) Hummingbird (GPU)

RAPIDS
TVM (GPU Baseline) 1, chscript TVM

Sklearn
(CPU Baseline)

Algorithm Dataset

TorchScript

Rand. Forest

LightGBM

XGBoost

Fraud

Year

Covtype

Epsilon

Fraud

Year

Covtype

Epsilon

Fraud

Year

Covtype

Epsilon

(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

2.5 7.8 3.0 ISUPPORTED 0.044 0.015
1.9 7.7 1.4 ISUPPORTED 0.045 0.026
5.9 16.5 6.8 ISUPPORTED 0.110 0.047
9.8 13.9 6.6 ISUPPORTED 0.130 0.13
3.4 7.0 1.7 0.014 0.044 0.014
5.0 /.06 1.6 0.023 0.045 0.025
51.1 79.5 27.2 ISUPPORTED 0.620 0.250
10.5 14.5 4.0 0.150 0.130 0.120
1.9 7.0 1.6 0.013 0.044 0.015
3.1 7.6 1.6 0.022 0.045 0.026
42.3 79.0 26.4 ISUPPORTED 0.620 0.250
7.0 14.8 4.2 0.150 0.130 0.120
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Algorithm

Rand. Forest

LightGBM

XGBoost

Tree-Models Microbenchmark

Sklearn
(CPU Baseline)

Dataset

VM (GPU Baseline)

TorchScript TorchScript

Hummingbird (CPU) RAPIDS Hummingbird (GPU)

TVM

Fraud 2.5 7.8 3.0 ISUPPORTED 0.044 0.015
Year 1.9 7.7 1.4 ISUPPORTED 0.045 0.026
Covtype 5.9 16.5 6.8 ISUPPORTED 0.110 0.047
Epsilon 0.8 13.9 6.6 ISUPPORTED 0.130 0.13
Fraud 3.4 /.6 1.7 0.014 0.044 0.014
Year 5.0 7.6 1.6 0.023 0.045 0.025
Covtype 51.1 79.5 27.2 ISUPPORTED 0.620 0.250
Epsilon 10.5 14.5 4.0 0.150 0.130 0.120
Fraud 1.9 7.6 1.6 0.013 0.044 0.015
Year 3.1 7.6 1.6 0.022 0.045 0.026
Covtype 42.3 79.0 26.4 ISUPPORTED 0.620 0.250
Epsilon 7.6 14.8 4.2 0.150 0.130 0.120

(All runtimes are reported in seconds. More datasets and experimental results in the paper.)
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