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ML prediction serving has emerged as an important systems problem.
High throughput, low latency, engineering concerns (e.g., maintainability)

Specialized systems have been developed. Focus: Deep Learning (DL)

Responsible for 45%-65% of the total cost of ownership of ML solutions.

 source: “The Total Cost of Ownership of Amazon SageMaker”
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Predictive Maintenance Supply-chain Optimizations Customer Churn Prediction

Powered By: Traditional Machine Learning

50%-95% of all ML applications in an organization are based on Traditional ML

 source: “The Total Cost of Ownership of Amazon SageMaker”
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Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using imperative code in an ad-hoc 
fashion, not using a shared logical abstraction.

Highly complex solutions, amplified engineering costs, and reduced operational 
performance.

?
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Hummingbird, a system that can execute traditional ML models 
on DL prediction serving systems.

Significantly reduced engineering efforts and software 
complexity. Increased Portability.

Benefits: Up to 1200x speedups for predictive pipelines against 
state-of-the-art frameworks.

Seamless hardware acceleration w/ up to 3x speedups 
compared hand-crafted GPU kernels.
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Predictive pipelines (DAGs) composed of featurization and model operators.

Data 

ValueImputer 
(strategy:constant)

ValueImputer 
(strategy:mean) StandardScaler

OneHotEncoder TruncatedSVD

RandomForest 
Model

numerical

features

categorical 

features

Can contain 10s of operators selected from 100s of potential featurization 
and model operators.

Operators are expressed using imperative code.
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Deep Learning
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DL models are expressed as a DAG of tensor operators.

w1 b1

X MatMul Add ReLU MatMul Add Sigmoid

w1 b1

User

Input

Can contain 100s of operators with often 10s of unique operator types.
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Exploit the abstraction of tensor operations to support multiple DL frameworks on 
multiple target environments.

MatMul Add ReLU …

Significantly reduced engineering

efforts. Increased Portability.

Benefits: Target-independent and target-
dependent optimization in a 
single place.
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Focus: Traditional ML pipelines trained on structured data.

Observation: Once trained, each operator can be represented as a transformation 
function that transforms input features into output features/score.

Often much simpler than the algorithm used during training.

Algebraic Operations: E.g., Linear Regression

Algorithmic Operations: E.g., RandomForest, OneHotEncoder

Y = wX + b

Complex data access patterns and control-flow patterns!
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Problem: How to compile algorithmic operators into tensor operators?

Introduce redundancies, both computational and storage, and 
make the data access patterns and control flow uniform for all inputs.

Our Solution:

Depending on the level of redundancy introduced there can be

more than one potential compilation approach. 

Hummingbird picks the one that works best for the target setting.
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3. Experimental Evaluation

Main Idea: Compile Traditional ML Operators into Tensor Operators

Example: Compiling Decision Tree-based Models

High-level System Architecture
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This technique can be easily adopted for tree-ensembles by batching individual tensors for each tree.
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Above approach (GEMM approach) essentially evaluates all paths in a 
decision tree model: computation redundancy.

More details about these methods and a summary of techniques used to compile 40+ Scikit-Learn ops can be found in our paper.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

Two other tree traversal-based methods that exploit the tree structure.

For tall trees (e.g., LightGBM)
TreeTraversal

For bushy trees (e.g., XGBoost)
PerfectTreeTraversal
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Pipeline Parser

Optimizer

Tensor DAG Compiler
Hummingbird

ONNX-ML

Trained 
Traditional 

ML Pipelines

PyTorch/TorchScript

DL Prediction 
Serving Systems

Optimizations:
Heuristics-based strategy selection
Feature selection push-down
Algebraic rewrites
Batching stacked models
(More details in our paper)

TF XLA
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Hardware Setup Experimental Workload

Hummingbird can translate 2328 pipelines (88%).

Perform inference on 20% of the dataset.

TorchScript as the backend for Hummingbird.

Scikit-Learn pipelines for OpenML-CC18 
benchmark which has 72 datasets.


Azure NC6 v2 machine

Intel Xeon E5-2690 

v4@ 2.6GHz (6 cores)

112 GB RAM

Nvidia P100 Ubuntu 18.04,

PyTorch 1.3, TVM 0.6, CUDA 10,


RAPIDS 0.9
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CPU GPU

60%

1200 X60 X

73%

1000 X130 X

Main reasons for slowdowns: Sparse input data, small inference datasets.
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Dataset Rows #Features Task

Fraud 285k 28 BinaryClass

Year 512k 90 Regression

Covtype 581k 54 MultiClass

Epsilon 500k 2000 BinaryClass

(* https://github.com/NVIDIA/gbm-bench)



Tree-Models Microbenchmark

!27

Experimental Workload: Nvidia Gradient Boosting Algorithm Benchmark*

Dataset Rows #Features Task

Fraud 285k 28 BinaryClass

Year 512k 90 Regression

Covtype 581k 54 MultiClass

Epsilon 500k 2000 BinaryClass

3 Models: RandomForest, XGBoost, LightGBM.


80/20 train/test split.


Batch inference (batch size 10k w/ and w/o 
GPU.


(* https://github.com/NVIDIA/gbm-bench)
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Algorithm Dataset Sklearn 
(CPU Baseline)

Hummingbird (CPU) RAPIDS  
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud

Year

Covtype

Epsilon

LightGBM

Fraud

Year

Covtype

Epsilon

XGBoost

Fraud

Year

Covtype

Epsilon
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)
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Algorithm Dataset Sklearn 
(CPU Baseline)

Hummingbird (CPU) RAPIDS  
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud 2.5 7.8 3.0

Year 1.9 7.7 1.4

Covtype 5.9 16.5 6.8

Epsilon 9.8 13.9 6.6

LightGBM

Fraud 3.4 7.6 1.7

Year 5.0 7.6 1.6

Covtype 51.1 79.5 27.2
Epsilon 10.5 14.5 4.0

XGBoost

Fraud 1.9 7.6 1.6

Year 3.1 7.6 1.6

Covtype 42.3 79.0 26.4

Epsilon 7.6 14.8 4.2
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)
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Algorithm Dataset Sklearn 
(CPU Baseline)

Hummingbird (CPU) RAPIDS  
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud 2.5 7.8 3.0

Year 1.9 7.7 1.4

Covtype 5.9 16.5 6.8

Epsilon 9.8 13.9 6.6

LightGBM

Fraud 3.4 7.6 1.7

Year 5.0 7.6 1.6

Covtype 51.1 79.5 27.2
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Fraud 1.9 7.6 1.6
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Algorithm Dataset Sklearn 
(CPU Baseline)

Hummingbird (CPU) RAPIDS  
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud 2.5 7.8 3.0

Year 1.9 7.7 1.4

Covtype 5.9 16.5 6.8

Epsilon 9.8 13.9 6.6

LightGBM

Fraud 3.4 7.6 1.7

Year 5.0 7.6 1.6

Covtype 51.1 79.5 27.2
Epsilon 10.5 14.5 4.0

XGBoost

Fraud 1.9 7.6 1.6

Year 3.1 7.6 1.6

Covtype 42.3 79.0 26.4

Epsilon 7.6 14.8 4.2
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)



Tree-Models Microbenchmark

!30

Algorithm Dataset Sklearn 
(CPU Baseline)

Hummingbird (CPU) RAPIDS  
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud 2.5 7.8 3.0 !SUPPORTED 0.044 0.015

Year 1.9 7.7 1.4 !SUPPORTED 0.045 0.026

Covtype 5.9 16.5 6.8 !SUPPORTED 0.110 0.047
Epsilon 9.8 13.9 6.6 !SUPPORTED 0.130 0.13

LightGBM

Fraud 3.4 7.6 1.7 0.014 0.044 0.014

Year 5.0 7.6 1.6 0.023 0.045 0.025

Covtype 51.1 79.5 27.2 !SUPPORTED 0.620 0.250
Epsilon 10.5 14.5 4.0 0.150 0.130 0.120

XGBoost

Fraud 1.9 7.6 1.6 0.013 0.044 0.015

Year 3.1 7.6 1.6 0.022 0.045 0.026

Covtype 42.3 79.0 26.4 !SUPPORTED 0.620 0.250

Epsilon 7.6 14.8 4.2 0.150 0.130 0.120
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)
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Algorithm Dataset Sklearn 
(CPU Baseline)

Hummingbird (CPU) RAPIDS  
(GPU Baseline)

Hummingbird (GPU)

TorchScript TVM TorchScript TVM

Rand. Forest

Fraud 2.5 7.8 3.0 !SUPPORTED 0.044 0.015

Year 1.9 7.7 1.4 !SUPPORTED 0.045 0.026

Covtype 5.9 16.5 6.8 !SUPPORTED 0.110 0.047
Epsilon 9.8 13.9 6.6 !SUPPORTED 0.130 0.13

LightGBM

Fraud 3.4 7.6 1.7 0.014 0.044 0.014

Year 5.0 7.6 1.6 0.023 0.045 0.025

Covtype 51.1 79.5 27.2 !SUPPORTED 0.620 0.250
Epsilon 10.5 14.5 4.0 0.150 0.130 0.120

XGBoost

Fraud 1.9 7.6 1.6 0.013 0.044 0.015

Year 3.1 7.6 1.6 0.022 0.045 0.026

Covtype 42.3 79.0 26.4 !SUPPORTED 0.620 0.250

Epsilon 7.6 14.8 4.2 0.150 0.130 0.120
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)
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more traditional ML training frameworks and target DL prediction serving runtimes 
is in the pipeline.

Thank You!
https://github.com/microsoft/hummingbird

hummingbird-dev@microsoft.com


