Hummingbird: A Tensor Compiler for Unified
Machine Learning Prediction Serving

Supun Nakandalav, Karla Saurm, Gyeong-In Yus, Konstantinos
Karanasos™, Carlo Curino™, Markus Weimerm, Matteo Intelandim

% SEOUL

' : S
Microsoft UCSanDiego) o

UNIVERSITY

Machine Learning Prediction Serving

ML prediction serving has emerged as an important systems problem.

High throughput, low latency, engineering concerns (e.g., maintainability)

Machine Learning Prediction Serving

ML prediction serving has emerged as an important systems problem.

High throughput, low latency, engineering concerns (e.g., maintainability)

Responsible for 45%-65% of the total cost of ownership of ML solutions.
source: “The Total Cost of Ownership of Amazon SageMaker”

Machine Learning Prediction Serving

ML prediction serving has emerged as an important systems problem.

High throughput, low latency, engineering concerns (e.g., maintainability)

Responsible for 45%-65% of the total cost of ownership of ML solutions.
source: “The Total Cost of Ownership of Amazon SageMaker”

Specialized systems have been developed.

mivm EH@= s

——

Machine Learning Prediction Serving

ML prediction serving has emerged as an important systems problem.

High throughput, low latency, engineering concerns (e.g., maintainability)

Responsible for 45%-65% of the total cost of ownership of ML solutions.
source: “The Total Cost of Ownership of Amazon SageMaker”

Specialized systems have been developed.

Wtvm =

Focus: Deep Learning (DL)

—

—
——
—f

%% ONNX
RUNTIME

Traditional Machine Learning in the Enterprises

Traditional Machine Learning in the Enterprises

Powered By: Iraditional Machine Learning

Traditional Machine Learning in the Enterprises

XXX XXX XX
i
U EgB .

N A= |

(i o7 OO
)DQQQQ‘@ C
%F— EI:O:@‘ O 1€o3\qp) & =

Predictive Maintenance

Powered By: Iraditional Machine Learning

Traditional Machine Learning in the Enterprises

r i
&
[@O0
g BB .
] =

@COooooe) = C.

Bl O] k&8 KINY B

Predictive Maintenance Supply-chain Optimizations

—~—)

Powered By: Traditional Machine Learning

Traditional Machine Learning in the Enterprises

— L My

Predictive Maintenance Supply-chain Optimizations Customer Churn Prediction

Powered By: Traditional Machine Learning

Traditional Machine Learning in the Enterprises

Predictive Maintenance Supply-chain Optimizations Customer Churn Prediction

Powered By: Traditional Machine Learning

50%-95% of all ML applications in an organization are based on Traditional ML
source: “The Total Cost of Ownership of Amazon SageMaker”

Problem: Lack of Optimized Systems for
Traditional ML Serving

Systems for training traditional ML models are not optimized for serving.

Problem: Lack of Optimized Systems for
Traditional ML Serving

Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using imperative code in an ad-hoc
fashion, not using a shared logical abstraction.

Problem: Lack of Optimized Systems for
Traditional ML Serving

Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using imperative code in an ad-hoc
fashion, not using a shared logical abstraction.

Problem: Lack of Optimized Systems for
Traditional ML Serving

Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using imperative code in an ad-hoc
fashion, not using a shared logical abstraction.

Problem: Lack of Optimized Systems for
Traditional ML Serving

Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using imperative code in an ad-hoc
fashion, not using a shared logical abstraction.

Highly complex solutions, amplified engineering costs, and reduced operational
performance.

Proposed Approach: Reuse DL Prediction Serving
Systems for Traditional ML Serving

Hummingbird, a system that can execute traditional ML models
on DL prediction serving systems.

Proposed Approach: Reuse DL Prediction Serving
Systems for Traditional ML Serving

Hummingbird, a system that can execute traditional ML models
on DL prediction serving systems.

Benefits: Up to 1200x speedups for predictive pipelines against
state-of-the-art frameworks.

Proposed Approach: Reuse DL Prediction Serving
Systems for Traditional ML Serving

Hummingbird, a system that can execute traditional ML models
on DL prediction serving systems.

Benefits: Up to 1200x speedups for predictive pipelines against
state-of-the-art frameworks.

Seamless hardware acceleration w/ up to 3x speedups
compared hand-crafted GPU kernels.

Proposed Approach: Reuse DL Prediction Serving
Systems for Traditional ML Serving

Benefits:

Hummingbird, a system that can execute traditional ML models
on DL prediction serving systems.

Up to 1200x speedups for predictive pipelines against
state-of-the-art frameworks.

Seamless hardware acceleration w/ up to 3x speedups
compared hand-crafted GPU kernels.

Significantly reduced engineering efforts and software
complexity. Increased Portabillity.

Outline

1. Background

Traditional Machine Learning
Deep Learning (DL) and Systems for DL Prediction Serving
2. Our System: Hummingbird

3. Experimental Evaluation

Traditional Machine Learning

Traditional Machine Learning

Predictive pipelines (DAGs) composed of and operators.

Traditional Machine Learning

Predictive pipelines (DAGs) composed of featurization and model operators.

TruncatedSVD \

. Valuelmputer /
numerical e — StandardScale

features

categorical
features Valuelmputer
< O (strategy:constant) mmmmm g OneHotEncoder

RandomForest
Model

Traditional Machine Learning

Predictive pipelines (DAGs) composed of featurization and model operators.

categorical
features Valuelmputer
4> (strategy:constant) mmmmmmg OneHotEncoder TruncatedSVD \

. Valuelmputer /
numerical e — StandardScale

features

RandomForest
Model

Operators are expressed using imperative code.

Traditional Machine Learning

Predictive pipelines (DAGs) composed of featurization and model operators.

categorical
features Valuelmputer
4> (strategy:constant) mmmmmmg OneHotEncoder TruncatedSVD \

. Valuelmputer /
numerical e — StandardScale

features

RandomForest
Model

Operators are expressed using imperative code.

Can contain 10s of operators selected from 100s of potential featurization
and model operators.

Outline

1. Background

Traditional Machine Learning
Deep Learning (DL) and Systems for DL Prediction Serving
2. Our System: Hummingbird

3. Experimental Evaluation

Deep Learning

Primarily relies on the abstraction of tensors. 1

Scalar Vector

Matrix

7|5 4
Tensor

Deep Learning

Primarily relies on the abstraction of tensors. 1 B:l B i:l E :% E 423

Scalar Vector Matrix Tensor

DL models are expressed as a DAG of tensor operators.

MatMul MatMul Add —@

Deep Learning

Primarily relies on the abstraction of tensors. 1 B:l B i:l E % Ez 423|

Scalar Vector Matrix Tensor

DL models are expressed as a DAG of tensor operators.

MatMul MatMul Add —@

Can contain 100s of operators with often 10s of unique operator types.

Systems for DL Prediction Serving

Exploit the abstraction of tensor operations to support multiple DL frameworks on
multiple target environments.

10

Systems for DL Prediction Serving

Exploit the abstraction of tensor operations to support multiple DL frameworks on

multiple target environments.
1

O @

ONNX
RUNTIME

10

Systems for DL Prediction Serving

Exploit the abstraction of tensor operations to support multiple DL frameworks on
multiple target environments.

O @\'r‘ <

< ¥ FPGA ASIC

10

Systems for DL Prediction Serving

Exploit the abstraction of tensor operations to support multiple DL frameworks on
multiple target environments.

O @\'r‘ <

| \ \\
e 1
.": X _‘? - \~§_ \
.- -{ \
! 'I 13 e 7 ’
Py - &)/
;.I .V..T "_=. \

FPGA ASIC

10

Systems for DL Prediction Serving

Exploit the abstraction of tensor operations to support multiple DL frameworks on
multiple target environments.

O 9 ¢+ &
\\ \ / / Benefits: Target-independent and target-

slvm E@= OININX dependent optimization in a
single place.

10

Systems for DL Prediction Serving

Exploit the abstraction of tensor operations to support multiple DL frameworks on

multiple target environments.

"

O 9 T @
NAN S/

Nt ESE ok O

RUNTIME

Benefits:

Target-independent and target-
dependent optimization in a
single place.

Significantly reduced engineering
efforts. Increased Portability.

10

Outline

1. Background

2. Our System: Hummingbird

Main Idea: Compile Traditional ML Operators into Tensor Operators

Example: Compiling Decision Tree-based Models
High-level System Architecture

3. Experimental Evaluation

11

Main ldea: Compile Traditional ML Operators into
Tensor Operators

Main ldea: Compile Traditional ML Operators into
Tensor Operators

Focus: Traditional ML pipelines trained on structured data.

12

Main ldea: Compile Traditional ML Operators into

Focus:

Observation:

Tensor Operators

Traditional ML pipelines trained on structured data.

Once trained, each operator can be represented as a transformation
function that transforms input features into output features/score.

12

Main ldea: Compile Traditional ML Operators into

Focus:

Observation:

Tensor Operators

Traditional ML pipelines trained on structured data.

Once trained, each operator can be represented as a transformation
function that transforms input features into output features/score.

Often much simpler than the algorithm used during training.

12

Main ldea: Compile Traditional ML Operators into
Tensor Operators

Focus: Traditional ML pipelines trained on structured data.

Once trained, each operator can be represented as a transformation

Observation: function that transforms input features into output features/score.

Often much simpler than the algorithm used during training.

Algebraic Operations: E.g., Linear Regression Y =wX +Db

Algorithmic Operations: E.g., RandomForest, OneHotEncoder

12

Main ldea: Compile Traditional ML Operators into
Tensor Operators

Focus: Traditional ML pipelines trained on structured data.

Once trained, each operator can be represented as a transformation

Observation: function that transforms input features into output features/score.

Often much simpler than the algorithm used during training.

Algebraic Operations: E.g., Linear Regression Y =wX +Db

Algorithmic Operations: E.g., RandomForest, OneHotEncoder

12

Main ldea: Compile Traditional ML Operators into
Tensor Operators

Focus: Traditional ML pipelines trained on structured data.

Once trained, each operator can be represented as a transformation

Observation: function that transforms input features into output features/score.

Often much simpler than the algorithm used during training.

Algebraic Operations: E.g., Linear Regression Y =wX +Db

Algorithmic Operations: E.g., RandomForest, OneHotEncoder

2

——

//

Complex data access patterns and control-flow patterns!

12

Main ldea: Compile Traditional ML Operators into
Tensor Operators

Problem: How to compile algorithmic operators into tensor operators??

13

Main ldea: Compile Traditional ML Operators into
Tensor Operators

Problem: How to compile algorithmic operators into tensor operators??

Our Solution: Introduce redundancies, both computational and storage, and
make the data access patterns and control flow uniform for all inputs.

13

Main ldea: Compile Traditional ML Operators into

Problem:

Our Solution:

Tensor Operators

How to compile algorithmic operators into tensor operators?

Introduce redundancies, both computational and storage, and
make the data access patterns and control flow uniform for all inputs.

Depending on the level of redundancy introduced there can be
more than one potential compilation approach.

Hummingbird picks the one that works best for the target setting.

13

Outline

1. Background

2. Our System: Hummingbird

Main Idea: Compile Traditional ML Operators into Tensor Operators

Example: Compiling Decision Tree-based Models

High-level System Architecture

3. Experimental Evaluation

14

true

L

Complllng Decision Tree-based Models

true g false

true

true

false

0.1

45 1.9 101

3.5

F (Feature Vector)

15

Complllng Decision Tree-based Models

A
true false

true false true false

Ls

A e RIFIXI

j
0, otherwise

A =

{1, I; evaluates F;
i.J

true false

01 45 1.9 101 3.5

F (Feature Vector)

true false true false

Complllng Decision Tree-based Models

true ﬂ false

true

false

A

A e RIFIXI

j
0, otherwise

Al,] —

Ls

B e Rl

0.1

4.5

1.9

10.7

B; = ThresholdValue(l))

F (Feature Vector)

{1, I; evaluates F;

15

Complllng Decision Tree-based Models

C
true false

true false true false

Ls

C e RIXIL

—1, L; € RightSubTree(l)
=19 L L € LeftSubTree(l;)

0, otherwise

true false

01 45 1.9 101 3.5

F (Feature Vector)
16

Complllng Decision Tree-based Models

C
true false

true false true false

Ls

C e RIXIL

—1, L; € RightSubTree(l)
=19 L L € LeftSubTree(l;)

0, otherwise

true false

D e RIH

01 45 1.9 101 3.5

D,=) A(k== LeftChild(Parent(k)))

path

F (Feature Vector) k€L,—Root

16

Compiling Decision Tree-based Models
A

0.1

4.5

1.9

10.1

F (Feature Vector)

17

Compiling Decision Tree-based Models
A

0.1

4.5

1.9

10.1

F (Feature Vector)

1.9

4.6

0.1

10.1

17

Compiling Decision Tree-based Models
A

F1 F» Fs Fa
0.1 4.5 1.9 101 3.5
F (Feature Vector)
1.9 4.6 10.1

1.9

4.6

0.1

10.1

17

Compiling Decision Tree-based Models
A

F1 F» Fs Fa
0.1 4.5 1.9 101 3.5
F (Feature Vector)
1.9 4.6 10.1

1.9

4.6

0.1

10.1

17

Compiling Decision Tree-based Models

18

Compiling Decision Tree-based Models

18

Compiling Decision Tree-based Models

18

Compiling Decision Tree-based Models

18

Compiling Decision Tree-based Models

This technigue can be easily adopted for tree-ensembles by batching individual tensors for each tree.

18

Compiling Decision Tree-based Models

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

19

Compiling Decision Tree-based Models

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

Encoding tree structure using tensors introduce storage redundancy.

19

Compiling Decision Tree-based Models

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

19

Compiling Decision Tree-based Models

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

Two other tree traversal-based methods that exploit the tree structure.

£YY

TreeTraversal N PerfectTreeTraversal

For tall trees (e.g., LightGBM) ‘ For bushy trees (e.g., XGBoost)

3

X

19

Compiling Decision Tree-based Models

Above approach (GEMM approach) essentially evaluates all paths in a
decision tree model: computation redundancy.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

Two other tree traversal-based methods that exploit the tree structure.

N
TreeTraversal N PerfectlreeTraversal
For tall trees (e.g., LightGBM) P For bushy trees (e.g., XGBoost) / \ VARN
"

More details about these methods and a summary of techniques used to compile 40+ Scikit-Learn ops can be found in our paper. 19

Outline

1. Background

2. Our System: Hummingbird

Main Ildea: Compile Traditional ML Operators into Tensor Operators
Example: Compiling Decision Tree-based Models

High-level System Architecture

3. Experimental Evaluation

20

High-level System Architecture

y Pipeline Parser

Hummingbird Optlmlzer

Tensor DAG Compiler

High-level System Architecture

Trained
Trad_itio_nal f X G B 00S t PPPPP ‘AZ
ML Pipelines ‘ nghtG B M N Pipeﬁn!’(,.. ML

l

y Pipeline Parser

Hummingbird Optlmlzer

Tensor DAG Compiler

Trained
Traditional
ML Pipelines

High-level System Architecture

o). XGBoost @

LightGBM o

APACHE

Spor "ML

Pipelines

»

Hummingbird

l

Pipeline Parser

Optimizations:

Optimizer

Feature selection push-down

Algebraic rewrites

Tensor DAG Compiler

Batching stacked models

(More details in our paper)

Heuristics-based strategy selection

21

High-level System Architecture

Trained

Traditional ‘ &m X GBOOS t

ML Pipelines

LightGBM o

spaicuL

Pipelines

»

Hummingbird

l

Pipeline Parser

Optimizations:

Optimizer

Feature selection push-down

Algebraic rewrites

Tensor DAG Compiler Batching stacked models

(More details in our paper)

l

DL Prediction
Serving Systems

8 LVM 3 Qe

PyTorch/TorchScript

Heuristics-based strategy selection

21

High-level System Architecture

Trained

Trad_itio_nal eew‘n X GBOOS t
ML Pipelines ‘ nghtGBM ONGCML

APACHE

Pipelines

Sporl‘QZML

@ Hzo.oi

l

Pipeline Parser

»

Hummingbird

Optimizer

Tensor DAG Compiler

l

Optimizations:
Heuristics-based strategy selection
Feature selection push-down
Algebraic rewrites

Batching stacked models

(More details in our paper)

DL Prediction
Serving Systems

@ lVM

ONNX
RUNTIME

L —

PyTorch/TorchScript

TFXLA 21

Traditional

’ ""\\
\'\
PR |
‘ scikit |
ML

w SPQI"”(\Z VIL H0o

Deep
Learning

. N

< L

DL Prediction
Serving Systems

\\\ L

WLV 3 A pi= =

| \ \\
e o (@)
&L | >
il i ;, /
Ll - r’:

FPGA ASIC

22

Traditional
ML

Deep
Learning

K

DL Prediction
Serving Systems

O 2 <K
\\\ ///

WLV 3 A ==

| \ \\
Ty =
: vd k? ' ‘\-;E_'-,
v o 4
. il > t5 V4)
'.l. r. . r;::

FPGA ASIC

Hummingbird

22

Outline

1. Background

2. Our System: Hummingbird

3. Experimental Evaluation

23

End-to-End Pipeline Evaluation

Hardware Setup

Azure NC6 v2 machine

0 ¢

Intel Xeon E5-2690
112 GB RAM
v4@ 2.6GHz (6 cores)
“

@@ D

Nvidia P100 Ubuntu 18.04,
PyTorch 1.3, TVM 0.6, CUDA 10,
RAPIDS 0.9

24

End-to-End Pipeline Evaluation

Hardware Setup Experimental Workload

Azure NC6 v2 machine

Scikit-Learn pipelines for OpenML-CC18

D & benchmark which has 72 datasets.

Hummingbird can translate 2328 pipelines (88%).
Intel Xeon E5-2690 112 GB RAM

v4@ 2.6GHz (6 cores)
\‘

@@ D

Nvidia P100 Ubuntu 18.04,
PyTorch 1.3, TVM 0.6, CUDA 10,
RAPIDS 0.9 o

Perform inference on 20% of the dataset.

TorchScript as the backend for Hummingbird.

Slow Down

10X 2X 2X 10X 100X

End-to-End Pipeline Evaluation

CPU

@]

Speed U

Pipelines

25

Slow Down

10X 2X 2X 10X 100X

End-to-End Pipeline Evaluation

CPU

@]

Speed U

Pipelines

25

Slow Down

End-to-End Pipeline Evaluation

CPU

10X 2X 2X 10X 100X

1200 X — 4

60 X

Pipelines

103

102 @]

Speed U

101

109

25

Slow Down

10X 2X

End-to-End Pipeline Evaluation

CPU

2X

10X 100X

60 X

Pipelines

10X

1200 X — A |

2X

GPU

2X 100X

Speed Up

Pipelines

20

Slow Down

10X 2X

End-to-End Pipeline Evaluation

CPU

2X

10X 100X

60 X

Pipelines

10X

1200 X — A |

2X

GPU

2X 100X

Speed Up

Pipelines

20

Slow Down

10X 2X

End-to-End Pipeline Evaluation

CPU

2X

10X 100X

60 X

Pipelines

10X

1200 X — A |

2X

2 X

GPU

100X

130

1000 X— ==

Pipelines

103

104

101

109

Speed Up

20

End-to-End Pipeline Evaluation

10X

CPU
g3 (10X 2X 2X 10X 100X
5 .
%10 5
a
3
5 101

-
-
o

Main reasons for slowdowns:

Pipelines

2X

GPU

2X 100X

130

1000 X— ==

Pipelines

Sparse input data, small inference datasets.

103

104

101

109

Speed Up

20

Dataset

Fraud

Year

Covtype

Epsilon

Tree-Models Microbenchmark

Rows #Features Task

285k 28 BinaryClass
512k 90 Regression
581k 54 MultiClass

500k 2000 BinaryClass

(* https://github.com/NVIDIA/gbm-bench)

Experimental Workload: Nvidia Gradient Boosting Algorithm Benchmark®

27

Tree-Models Microbenchmark

Experimental Workload: Nvidia Gradient Boosting Algorithm Benchmark®

Dataset Rows #Features Task

3 Models: RandomForest, XGBoost, LightGBM.

Fraud 285K 28 BinaryClass

80/20 train/test split.
Year 512k 90 Regression

Covtype BRI:EI% 54 MultiClass CBaeFt)thjh inference (batch size 10k w/ and w/o

Epsilon REsele] 2000 BinaryClass

(* https://github.com/NVIDIA/gbm-bench) -

Tree-Models Microbenchmark

Hummingbird (CPU) RAPIDS Hummingbird (GPU)

Sklearn
(CPU Baseline} TorchScript TVM (GPU Baseline) TorchScript TVM

Algorithm Dataset

Fraud
Year
Rand. Forest
Covtype

Epsilon

Fraud

Year
LightGBM
Covtype

Epsilon

Fraud
Year
XGBoost
Covtype

Epsilon

(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

Tree-Models Microbenchmark

Sklearn Hummingbird (CPU) RAPIDS Hummingbird (GPU)
(CPU Baseline) TorchScript TVM (GPU Baseline) TorchScript TVM
Fraud 2.5 7.8 3.0
Year 1.9 (.7 1.4
Covtype 5.9 16.5 6.8
Epsilon 0.8 13.9 6.6
Fraud 3.4 [.6 1.7
Year 5.0 /.6 1.6
Covtype 51.1 79.5 27.2
Epsilon 10.5 14.5 4.0
Fraud 1.9 /.6 1.6
Year 3.1 /.6 1.6
Covtype 42.3 79.0 26.4

Epsilon /.6 14.8 4.2
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

Algorithm Dataset

Rand. Forest

LightGBM

XGBoost

Tree-Models Microbenchmark

Sklearn Hummingbird (CPU) RAPIDS Hummingbird (GPU)
(CPU Baseline) TorchScript TVM (GPU Baseline) TorchScript TVM
Fraud 2.5 7.8 3.0
Year 1.9 (.7 1.4
Covtype 5.9 16.5 6.8
Epsilon 0.8 13.9 6.6
Fraud 3.4 [.6 1.7
Year 5.0 /.6 1.6
Covtype 51.1 79.5 27.2
Epsilon 10.5 14.5 4.0
Fraud 1.9 /.6 1.6
Year 3.1 /.6 1.6
Covtype 42.3 79.0 26.4

Epsilon /.6 14.8 4.2
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

Algorithm Dataset

Rand. Forest

LightGBM

XGBoost

Algorithm

Rand. Forest

LightGBM

XGBoost

Tree-Models Microbenchmark

Sklearn
(CPU Baseline) TorchScript TVM (GPU Baseline) TorchScript

Fraud 2.5 /.8 3.0
Year 1.9 (.7 1.4
Covtype 5.9 16.5 6.8
Epsilon 0.8 13.9 6.6

Dataset

Hummingbird (CPU) RAPIDS Hummingbird (GPU)

TVM

Fraud 3.4 [.6 1.7

Year 5.0 /.6 1.6
Covtype 51.1 79.5 27.2
Epsilon 10.5 14.5 4.0

Fraud 1.9 /.6 1.6
Year 3.1 7.6 1.6
Covtype 42.3 79.0 26.4

Epsilon /.6 14.8 4.2
(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

29

Tree-Models Microbenchmark

Hummingbird (CPU) Hummingbird (GPU)

RAPIDS
TVM (GPU Baseline) 1, chscript TVM

Sklearn
(CPU Baseline)

Algorithm Dataset

TorchScript

Rand. Forest

LightGBM

XGBoost

Fraud

Year

Covtype

Epsilon

Fraud

Year

Covtype

Epsilon

Fraud

Year

Covtype

Epsilon

(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

2.5 7.8 3.0 ISUPPORTED 0.044 0.015
1.9 7.7 1.4 ISUPPORTED 0.045 0.026
5.9 16.5 6.8 ISUPPORTED 0.110 0.047
9.8 13.9 6.6 ISUPPORTED 0.130 0.13
3.4 7.0 1.7 0.014 0.044 0.014
5.0 /.06 1.6 0.023 0.045 0.025
51.1 79.5 27.2 ISUPPORTED 0.620 0.250
10.5 14.5 4.0 0.150 0.130 0.120
1.9 7.0 1.6 0.013 0.044 0.015
3.1 7.6 1.6 0.022 0.045 0.026
42.3 79.0 26.4 ISUPPORTED 0.620 0.250
7.0 14.8 4.2 0.150 0.130 0.120

30

Algorithm

Rand. Forest

LightGBM

XGBoost

Tree-Models Microbenchmark

Sklearn
(CPU Baseline)

Dataset

VM (GPU Baseline)

TorchScript TorchScript

Hummingbird (CPU) RAPIDS Hummingbird (GPU)

TVM

Fraud 2.5 7.8 3.0 ISUPPORTED 0.044 0.015
Year 1.9 7.7 1.4 ISUPPORTED 0.045 0.026
Covtype 5.9 16.5 6.8 ISUPPORTED 0.110 0.047
Epsilon 0.8 13.9 6.6 ISUPPORTED 0.130 0.13
Fraud 3.4 /.6 1.7 0.014 0.044 0.014
Year 5.0 7.6 1.6 0.023 0.045 0.025
Covtype 51.1 79.5 27.2 ISUPPORTED 0.620 0.250
Epsilon 10.5 14.5 4.0 0.150 0.130 0.120
Fraud 1.9 7.6 1.6 0.013 0.044 0.015
Year 3.1 7.6 1.6 0.022 0.045 0.026
Covtype 42.3 79.0 26.4 ISUPPORTED 0.620 0.250
Epsilon 7.6 14.8 4.2 0.150 0.130 0.120

(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

30

Summary

Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.

31

Summary

Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.

Compiles traditional ML pipelines into tensor computations and thereby reuse DL
prediction serving systems for traditional ML prediction serving.

31

Summary

Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.

Compiles traditional ML pipelines into tensor computations and thereby reuse DL
prediction serving systems for traditional ML prediction serving.

Open sourced and part of PyTorch eco-system and ONNX converters. Support for

more traditional ML training frameworks and target DL prediction serving runtimes
IS In the pipeline.

31

Summary

Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.

Compiles traditional ML pipelines into tensor computations and thereby reuse DL
prediction serving systems for traditional ML prediction serving.

Open sourced and part of PyTorch eco-system and ONNX converters. Support for
more traditional ML training frameworks and target DL prediction serving runtimes
IS In the pipeline.

|
T h a‘ n k YO u " ARTIFACT ARTIFACT ARTIFACT

. _ _] EVALUATED EVALUATED EVALUATED
https://github.com/microsoft’/hummingbird EUssni | | @pssns. | | @senx.

hummingbird-dev@microsoft.com

31

