Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving

Supun Nakandala^u, Karla Saur^m, Gyeong-In Yu^s, Konstantinos Karanasos^m, Carlo Curino^m, Markus Weimer^m, Matteo Intelandi^m

ML prediction serving has emerged as an important systems problem. High throughput, low latency, engineering concerns (e.g., maintainability)

ML prediction serving has emerged as an important systems problem. High throughput, low latency, engineering concerns (e.g., maintainability)

Responsible for 45%-65% of the total cost of ownership of ML solutions. source: "The Total Cost of Ownership of Amazon SageMaker"

ML prediction serving has emerged as an important systems problem. High throughput, low latency, engineering concerns (e.g., maintainability)

Responsible for 45%-65% of the total cost of ownership of ML solutions. source: "The Total Cost of Ownership of Amazon SageMaker"

Specialized systems have been developed.

ML prediction serving has emerged as an important systems problem. High throughput, low latency, engineering concerns (e.g., maintainability)

Responsible for 45%-65% of the total cost of ownership of ML solutions. source: "The Total Cost of Ownership of Amazon SageMaker"

Specialized systems have been developed.

Powered By: Traditional Machine Learning

Predictive Maintenance

Powered By: Traditional Machine Learning

Predictive Maintenance

- **Supply-chain Optimizations**
- **Powered By:** Traditional Machine Learning

Predictive Maintenance

Supply-chain Optimizations

Customer Churn Prediction

Powered By: Traditional Machine Learning

50%-95% of all ML applications in an organization are based on Traditional ML source: "The Total Cost of Ownership of Amazon SageMaker"

Customer Churn Prediction

Powered By: Traditional Machine Learning

Systems for training traditional ML models are not optimized for serving.

fashion, not using a shared logical abstraction.

- Systems for training traditional ML models are not optimized for serving.
- Traditional ML models are expressed using **imperative code** in an ad-hoc

Systems for training traditional ML models are not optimized for serving.

Traditional ML models are expressed using **imperative code** in an ad-hoc fashion, not using a **shared logical abstraction**.

fashion, not using a **shared logical abstraction**.

- Systems for training traditional ML models are not optimized for serving.
- Traditional ML models are expressed using **imperative code** in an ad-hoc

fashion, not using a shared logical abstraction.

performance.

- Systems for training traditional ML models are not optimized for serving.
- Traditional ML models are expressed using **imperative code** in an ad-hoc

Highly complex solutions, amplified engineering costs, and reduced operational

on DL prediction serving systems.

Hummingbird, a system that can execute traditional ML models

on DL prediction serving systems.

Benefits:

- Hummingbird, a system that can execute traditional ML models
 - Up to **1200x speedups** for predictive pipelines against state-of-the-art frameworks.

on DL prediction serving systems.

Benefits:

- Hummingbird, a system that can execute traditional ML models
 - Up to **1200x speedups** for predictive pipelines against state-of-the-art frameworks.
 - Seamless hardware acceleration w/ up to **3x speedups** compared hand-crafted GPU kernels.

on DL prediction serving systems.

Benefits:

- Hummingbird, a system that can execute traditional ML models
 - Up to **1200x speedups** for predictive pipelines against state-of-the-art frameworks.
 - Seamless hardware acceleration w/ up to **3x speedups** compared hand-crafted GPU kernels.
 - Significantly reduced engineering efforts and software complexity. Increased Portability.

- 1. Background
 - **Traditional Machine Learning**
 - **Deep Learning (DL) and Systems for DL Prediction Serving**
- 2. Our System: Hummingbird

3. Experimental Evaluation

Outline

Predictive pipelines (DAGs) composed of *featurization* and *model* operators.

Predictive pipelines (DAGs) composed of *featurization* and *model* operators.

Predictive pipelines (DAGs) composed of *featurization* and *model* operators.

Operators are expressed using imperative code.

Predictive pipelines (DAGs) composed of *featurization* and *model* operators.

Operators are expressed using **imperative code**.

Can contain 10s of operators selected from 100s of potential featurization and model operators.

1. Background **Traditional Machine Learning Deep Learning (DL) and Systems for DL Prediction Serving** 2. Our System: Hummingbird

3. Experimental Evaluation

Outline

Primarily relies on the abstraction of tensors. 1

Deep Learning

$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 7 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix}$

Scalar Vector Matrix Tensor

Primarily relies on the abstraction of tensors. 1

DL models are expressed as a DAG of tensor operators.

Deep Learning

Scalar Vector Matrix Tensor

Deep Learning 1 2 3 4

Primarily relies on the abstraction of tensors. 1

DL models are expressed as a DAG of tensor operators.

Can contain 100s of operators with often 10s of unique operator types.

Scalar Vector Matrix Tensor

Exploit the abstraction of tensor operations to support multiple DL frameworks on multiple target environments.

Exploit the abstraction of tensor operations to support multiple DL frameworks on multiple target environments.

Exploit the abstraction of tensor operations to support multiple DL frameworks on multiple target environments.

Exploit the abstraction of tensor operations to support multiple DL frameworks on multiple target environments.

Exploit the abstraction of tensor operations to support multiple DL frameworks on multiple target environments.

Benefits:

Target-independent and targetdependent optimization in a single place.

Exploit the abstraction of tensor operations to support multiple DL frameworks on multiple target environments.

Benefits:

Target-independent and targetdependent optimization in a single place.

Significantly reduced engineering efforts. Increased Portability.

1. Background

2. Our System: Hummingbird Example: Compiling Decision Tree-based Models **High-level System Architecture 3. Experimental Evaluation**

Outline

Main Idea: Compile Traditional ML Operators into Tensor Operators

Traditional ML pipelines trained on structured data.

Focus:

Focus:

Observation:

- Traditional ML pipelines trained on structured data.
- Once trained, each operator can be represented as a transformation function that transforms input features into output features/score.

Focus:

Observation:

- Traditional ML pipelines trained on structured data.
- Once trained, each operator can be represented as a transformation function that transforms input features into output features/score.
- Often much simpler than the algorithm used during training.

Observation:

Focus:

- Traditional ML pipelines trained on structured data.
- Once trained, each operator can be represented as a transformation function that transforms input features into output features/score.
- Often much simpler than the algorithm used during training.
 - Algebraic Operations: E.g., Linear Regression $|\mathbf{Y} = \mathbf{wX} + \mathbf{b}|$

Algorithmic Operations: E.g., RandomForest, OneHotEncoder

Observation:

Focus:

- Traditional ML pipelines trained on structured data.
- Once trained, each operator can be represented as a transformation function that transforms input features into output features/score.
- Often much simpler than the algorithm used during training.
- Algebraic Operations: E.g., Linear Regression Y = wX + b

Algorithmic Operations: E.g., RandomForest, OneHotEncoder

Observation:

Focus:

- Traditional ML pipelines trained on structured data.
- Once trained, each operator can be represented as a transformation function that transforms input features into output features/score.
- Often much simpler than the algorithm used during training.
 - Algebraic Operations: E.g., Linear Regression Y = wX + b
 - Algorithmic Operations: E.g., RandomForest, OneHotEncoder
 - **Complex data access patterns and control-flow patterns!**

Problem:

How to compile algorithmic operators into tensor operators?

Problem: How to compile algorithmic operators into tensor operators?

Introduce redundancies, both computational and storage, and **Our Solution:** make the data access patterns and control flow uniform for all inputs.

Problem:

Our Solution:

How to compile algorithmic operators into tensor operators?

- Introduce redundancies, both computational and storage, and make the data access patterns and control flow uniform for all inputs.
- Depending on the level of redundancy introduced there can be more than one potential compilation approach.
- Hummingbird picks the one that works best for the target setting.

1. Background

2. Our System: Hummingbird Main Idea: Compile Traditional ML Operators into Tensor Operators

Example: Compiling Decision Tree-based Models

High-level System Architecture

3. Experimental Evaluation

Outline

F (Feature Vector)

A

0	0	0
1	0	0
0	0	1
0	0	0
0	1	0

Β

5.5

2.4

2.0

 $A \in \mathbb{R}^{|F| \times |I|}$

$A_{i,j} = \begin{cases} 1, I_j \text{ evaluates } F_i \\ 0, \text{ otherwise} \end{cases}$

A

0	0	0
1	0	0
0	0	1
0	0	0
0	1	0

Β

2.0

5.5

2.4

$$A \in \mathbb{R}^{|F| \times |I|}$$

 $A_{i,j} = \begin{cases} 1, I_j \text{ evaluates } F_i \\ 0, \text{ otherwise} \end{cases}$

 $B_j = ThresholdValue(I_j)$

1	-1	-1	-1
-1	0	0	0
0	1	1	-1
0	1	-1	0

 $C \in \mathbb{R}^{|I| \times |L|}$

$$C_{i,j} = \begin{cases} -1, L_j \in RightSubT\\ 1, L_j \in LeftSubTree\\ 0, otherwise \end{cases}$$

1	-1	-1	-1
-1	0	0	0
0	1	1	-1
0	1	-1	0

$$C_{i,j} = \begin{cases} -1, L_j \in RightSubT\\ 1, L_j \in LeftSubTree\\ 0, otherwise \end{cases}$$

F (Feature Vector)

Χ

Α

0	0	0
1	0	0
0	0	1
0	0	0
0	1	0

F (Feature Vector)

Χ

Α

0	0	0
1	0	0
0	0	1
0	0	0
0	1	0

1.9	4.6	0.1	
-----	-----	-----	--

F (Feature Vector)

1.9	4.6	0.1	10.1

0
0
1
0
0

0.5

Χ

==

Α

0	0	0
1	0	0
0	0	1
0	0	0
0	1	0

1.9	4.6	0.1	
-----	-----	-----	--

2.0	5.5	2.4

Β

F (Feature Vector)

1.9	4.6	0.1	10.1

0
0
1
0
0

0.5

Χ

==

Α

0	0	0
1	0	0
0	0	1
0	0	0
0	1	0

1.9	4.6	0.1	
-----	-----	-----	--

	8			I ₁	2	I 3	
2.0	5.5	2.4	=	0	0	1	

-1	-1	-1
0	0	0
1	1	-1
1	-1	0

0	0	1	
U	U		

0 0	1	1	-1	==	2	1	2	1	0
-----	---	---	----	----	---	---	---	---	---

-1	-1	-1					
0	0	0					
1	1	-1					
1	-1	0					
D							

0 0	1	1	
-----	---	---	--

I ₁	1 2	I 3	4		1	1	-1	-1	-1					
0	0	1	1	X	-	-	\frown	0	0	=	0	0	1	1
						-	U	U	U					
					0	0	1	1	-1					
					0	0	1	-1	0					
								D						
0	0	1	1	-1		2	1	2	1	0				
					_					L ₁	L ₂	L ₃	L ₄	L 5
									=	0	0	0	1	0

This technique can be easily adopted for tree-ensembles by batching individual tensors for each tree.

Above approach (**GEMM** approach) essentially evaluates all paths in a decision tree model: **computation redundancy**.

Above approach (**GEMM** approach) essentially evaluates all paths in a decision tree model: **computation redundancy**.

Encoding tree structure using tensors introduce storage redundancy.

Above approach (**GEMM** approach) essentially evaluates all paths in a decision tree model: **computation redundancy**.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

Above approach (GEMM approach) essentially evaluates all paths in a decision tree model: computation redundancy.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

Two other tree traversal-based methods that exploit the tree structure.

TreeTraversal

For tall trees (e.g., LightGBM)

PerfectTreeTraversal

For bushy trees (e.g., XGBoost)

Above approach (**GEMM** approach) essentially evaluates all paths in a decision tree model: **computation redundancy**.

Encoding tree structure using tensors introduce storage redundancy.

Works surprisingly well on modern hardware for many cases!

Two other tree traversal-based methods that exploit the tree structure.

TreeTraversal

For tall trees (e.g., LightGBM)

More details about these methods and a summary of techniques used to compile 40+ Scikit-Learn ops can be found in our paper.

PerfectTreeTraversal

For bushy trees (e.g., XGBoost)

1. Background

2. Our System: Hummingbird

Example: Compiling Decision Tree-based Models

High-level System Architecture

3. Experimental Evaluation

Outline

- Main Idea: Compile Traditional ML Operators into Tensor Operators

Optimizations:

Heuristics-based strategy selection

Feature selection push-down

Algebraic rewrites

Batching stacked models

(More details in our paper)

Optimizations:

Heuristics-based strategy selection

Feature selection push-down

Algebraic rewrites

Batching stacked models

(More details in our paper)

High-level System Architecture

Traditional ML

22

ML

22

1. Background

2. Our System: Hummingbird

3. Experimental Evaluation

Outline

Hardware Setup

Azure NC6 v2 machine

Intel Xeon E5-2690 v4@ 2.6GHz (6 cores)

112 GB RAM

Nvidia P100

Hardware Setup

Azure NC6 v2 machine

Intel Xeon E5-2690 v4@ 2.6GHz (6 cores)

112 GB RAM

Nvidia P100

Experimental Workload

Scikit-Learn pipelines for OpenML-CC18 benchmark which has 72 datasets.

Hummingbird can translate 2328 pipelines (88%).

Perform inference on 20% of the dataset.

TorchScript as the backend for Hummingbird.

CPU

CPU

CPU

Main reasons for slowdowns:

Sparse input data, small inference datasets.

Experimental Workload: Nvidia Gradient Boosting Algorithm Benchmark*

Dataset	Rows	#Features	Task
Fraud	285k	28	BinaryClass
Year	512k	90	Regressior
Covtype	581k	54	MultiClass
Epsilon	500k	2000	BinaryClass

(* https://github.com/NVIDIA/gbm-bench)

Experimental Workload: Nvidia Gradient Boosting Algorithm Benchmark*

Dataset	Rows	#Features	Task
Fraud	285k	28	BinaryClass
Year	512k	90	Regression
Covtype	581k	54	MultiClass
Epsilon	500k	2000	BinaryClass

(* https://github.com/NVIDIA/gbm-bench)

Tree-Models Microbenchmark

		Sklearn	Hummingbird (CPU)		RAPIDS	Hummingbird (GPU)	
Algorithm	Dataset	(CPU Baseline)	TorchScript	TVM	(GPU Baseline)	TorchScript	TVM
	Fraud						
Dand Faraat	Year						
Rand. Forest	Covtype						
	Epsilon						
	Fraud						
LightCDM	Year						
LightGBM	Covtype						
	Epsilon						
	Fraud						
	Year						
XGBoost	Covtype						
	Epsilon						
					voorimontal raaulta		

(All runtimes are reported in seconds. More datasets and experimental results in the paper.)

	Datacat	Sklearn	Hummingbird (CPU)		RAPIDS	Hummingbird (GPU)	
Algorithm	Dataset	(CPU Baseline)	TorchScript	TVM	(GPU Baseline)	TorchScript	TVM
	Fraud	2.5	7.8	3.0			
Dand Eareat	Year	1.9	7.7	1.4			
Rand. Forest	Covtype	5.9	16.5	6.8			
	Epsilon	9.8	13.9	6.6			
	Fraud	3.4	7.6	1.7			
	Year	5.0	7.6	1.6			
LightGBM	Covtype	51.1	79.5	27.2			
	Epsilon	10.5	14.5	4.0			
	Fraud	1.9	7.6	1.6			
	Year	3.1	7.6	1.6			
XGBoost	Covtype	42.3	79.0	26.4			
	Epsilon	7.6	14.8	4.2			

	Datacat	Sklearn	Hummingbird (CPU)		RAPIDS	Hummingbird (GPU)	
Algorithm	Dataset	(CPU Baseline)	TorchScript	TVM	(GPU Baseline)	TorchScript	TVM
	Fraud	2.5	7.8	3.0			
Dend Forest	Year	1.9	7.7	1.4			
Rand. Forest	Covtype	5.9	16.5	6.8			
	Epsilon	9.8	13.9	6.6			
	Fraud	3.4	7.6	1.7			
	Year	5.0	7.6	1.6			
LightGBM	Covtype	51.1	79.5	27.2			
	Epsilon	10.5	14.5	4.0			
	Fraud	1.9	7.6	1.6			
	Year	3.1	7.6	1.6			
XGBoost	Covtype	42.3	79.0	26.4			
	Epsilon	7.6	14.8	4.2			

	Dataset	Sklearn	Hummingbird (CPU)		RAPIDS	Hummingbird (GPU)	
Algorithm		(CPU Baseline)	TorchScript	TVM	(GPU Baseline)	TorchScript	TVM
	Fraud	2.5	7.8	3.0			
David Farrent	Year	1.9	7.7	1.4			
Rand. Forest	Covtype	5.9	16.5	6.8			
	Epsilon	9.8	13.9	6.6			
	Fraud	3.4	7.6	1.7			
	Year	5.0	7.6	1.6			
LightGBM	Covtype	51.1	79.5	27.2			
	Epsilon	10.5	14.5	4.0			
	Fraud	1.9	7.6	1.6			
	Year	3.1	7.6	1.6			
XGBoost	Covtype	42.3	79.0	26.4			
	Epsilon	7.6	14.8	4.2			

	Dataset	Sklearn	Hummingbird (CPU)		RAPIDS	Hummingbird (GPU)	
Algorithm	Dataset	(CPU Baseline)	TorchScript	TVM	(GPU Baseline)	TorchScript	TVM
	Fraud	2.5	7.8	3.0	!SUPPORTED	0.044	0.015
Rand. Forest	Year	1.9	7.7	1.4	!SUPPORTED	0.045	0.026
nanu. Forest	Covtype	5.9	16.5	6.8	!SUPPORTED	0.110	0.047
	Epsilon	9.8	13.9	6.6	!SUPPORTED	0.130	0.13
	Fraud	3.4	7.6	1.7	0.014	0.044	0.014
LightCPM	Year	5.0	7.6	1.6	0.023	0.045	0.025
LightGBM	Covtype	51.1	79.5	27.2	!SUPPORTED	0.620	0.250
	Epsilon	10.5	14.5	4.0	0.150	0.130	0.120
	Fraud	1.9	7.6	1.6	0.013	0.044	0.015
VCDooot	Year	3.1	7.6	1.6	0.022	0.045	0.026
XGBoost	Covtype	42.3	79.0	26.4	!SUPPORTED	0.620	0.250
	Epsilon	7.6	14.8	4.2	0.150	0.130	0.120

Tree-Models Microbenchmark

30

	Deteet	Sklearn	Hummingbird (CPU)		RAPIDS	Hummingbird (GPU)	
Algorithm	Dataset	(CPU Baseline)	TorchScript	TVM	(GPU Baseline)	TorchScript	TVM
	Fraud	2.5	7.8	3.0	!SUPPORTED	0.044	0.015
Dand Earoat	Year	1.9	7.7	1.4	!SUPPORTED	0.045	0.026
Rand. Forest	Covtype	5.9	16.5	6.8	!SUPPORTED	0.110	0.047
	Epsilon	9.8	13.9	6.6	!SUPPORTED	0.130	0.13
	Fraud	3.4	7.6	1.7	0.014	0.044	0.014
	Year	5.0	7.6	1.6	0.023	0.045	0.025
LightGBM	Covtype	51.1	79.5	27.2	!SUPPORTED	0.620	0.250
	Epsilon	10.5	14.5	4.0	0.150	0.130	0.120
	Fraud	1.9	7.6	1.6	0.013	0.044	0.015
VCDeeet	Year	3.1	7.6	1.6	0.022	0.045	0.026
XGBoost	Covtype	42.3	79.0	26.4	!SUPPORTED	0.620	0.250
	Epsilon	7.6	14.8	4.2	0.150	0.130	0.120

Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.

prediction serving systems for traditional ML prediction serving.

Summary

- Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.
- Compiles traditional ML pipelines into tensor computations and thereby reuse DL

31

prediction serving systems for traditional ML prediction serving.

is in the pipeline.

Summary

- Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.
- Compiles traditional ML pipelines into tensor computations and thereby reuse DL
- Open sourced and part of PyTorch eco-system and ONNX converters. Support for more traditional ML training frameworks and target DL prediction serving runtimes

prediction serving systems for traditional ML prediction serving.

is in the pipeline.

Summary

- Hummingbird: A Tensor Compiler for Unified Machine Learning Prediction Serving.
- Compiles traditional ML pipelines into tensor computations and thereby reuse DL
- Open sourced and part of PyTorch eco-system and ONNX converters. Support for more traditional ML training frameworks and target DL prediction serving runtimes

Thank You!

- https://github.com/microsoft/hummingbird
 - hummingbird-dev@microsoft.com

