Imperial College London

THE UNIVERSITY

KungFu: Making Training in Distributed Machine Learning Adaptive

Luo Mai ^{1,2}

luo.mai@ed.ac.uk

With Guo Li¹, Marcel Wagenlander¹, Konstantinos Fertakis¹, Andrei-Octavian Brabete¹, Peter Pietzuch¹

Imperial College London¹, University of Edinburgh²

Training in Distributed ML Systems

Distributed training systems are key to combining big data with large models

HOROVOD

Parameters in Distributed ML Systems

Users must tune parameters to optimise **time-to-accuracy**

System parameters

- Number of workers
- Communication topology

• ...

Ring or binary-tree?

Issues with Empirical Parameter Tuning

Examples of empirical parameter tuning

"Change batch size at data epoch 30, 60, and 90 when training with ImageNet." [1]

"Linearly scale the learning rate with the #workers when training ResNet models." [2]

"Set the topology to a ring by default." [3]

Model-specific

Dataset-specific

Issue

Cluster-specific

[1] Dynamic Mini-batch SGD for Elastic Distributed Training: Learning in the Limbo of Resources, 2020
[2] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2018
[3] Horovod: fast and easy distributed deep learning in TensorFlow, 2018

Automatic Parameter Adaptation

Proposals for Automatic Parameter Adaptation

Open Challenges

Can we design a distributed ML system that supports adaptation?

Design challenges:

- How to support different types of adaptation?
- How to adapt based on large volume of monitoring data?
- How to change parameters of stateful workers?

Existing Approaches for Adaptation

Many adaptation steps

KungFu Overview

Contributions

1. Adaptation policies

2. Embedding monitoring operators inside dataflow

Contribution 1 Adaptation Policies

Adaptation Policies

Write adaptation policies using expressive API functions:

Monitoring	Communication	Adaptation
grad_noise_scalegrad_variance	allreducebroadcast	resizeset_tree

Example: Adaptation Policy for GNS

1. Adaptation logic in policy functions

Contribution 2 Embedding Monitoring Inside Dataflow

Embedding Monitoring Inside Dataflow

Problem: High monitoring cost reduces adaptation benefit Idea: Improve efficiency by **adding monitoring operators to dataflow graph**

Monitoring takes advantage of **optimisations in dataflow engines** and **collective communication** operations

Challenges of Dataflow Collective Communication

Problem: Collective communication reduces dataflow performance

2. Message-Passing-Interface (MPI) requires synchronous execution

Making Collective Communication Asynchronous

Idea: Use asynchronous collective communication

No need for coordination in asynchronous collective communication

Contribution 3 Distributed Mechanisms for Parameter Adaptation

Issues When Adapting System Parameters

Problem: Parameter adaptation affects state consistency

Dataflow for averaging GNS

Other system parameters

- Worker ranks
- Communication topology

•••

Adapting system parameters therefore often requires system restart

Distributed Mechanism for Parameter Adaptation

Idea: Decouple system parameters with dataflow state

Online parameter adaptation is consistent and fast

Experimental Evaluation

Small batch size reaches high accuracy, but converges slowly

Large batch size finishes quickly, but accuracy suffers

GNS predicts the effective batch size should increase during training

Embedded monitoring and **online adaptation** are important to Adaptation Policies

What is KungFu's Distributed Performance?

Compare KungFu with state-of-the-art library (Horovod)

Asynchronous collective communication enables KungFu to scale better

Conclusions: KungFu

KungFu makes distributed machine learning adaptive

- Current systems have no unified mechanism for adaptation

- 1. Adaptation policies that realise complex adaptation
- 2. Embedding monitoring inside dataflow
 - 3. Distributed mechanisms for consistent adaptation

KungFu @ Github

https://github.com/lsds/KungFu

