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Training in Distributed ML Systems 

2

ΔGradients

Dataset

Dataflow

Collective 
Communication

Data 
Batch

Worker 0

Worker 1

Worker 2

Worker 3

Distributed training systems are key to combining big data with large models



Parameters in Distributed ML Systems 
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Hyper-parameters
• Batch size
• Learning rate
• …

System parameters
• Number of workers
• Communication topology
• …

Worker 1

Worker 2

Worker 3Worker 0

Users must tune parameters to optimise time-to-accuracy

Small batch or large batch? Ring or binary-tree?



Issues with Empirical Parameter Tuning
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“Change batch size at data epoch 30, 60, and 90 when 
training with ImageNet.” [1]

“Linearly scale the learning rate with the #workers when 
training ResNet models.” [2]

“Set the topology to a ring by default.” [3]

[1] Dynamic Mini-batch SGD for Elastic Distributed Training: Learning in the Limbo of Resources, 2020
[2] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2018
[3] Horovod: fast and easy distributed deep learning in TensorFlow, 2018

Issue

Dataset-specific

Model-specific

Cluster-specific

Examples of empirical parameter tuning



Automatic Parameter Adaptation
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OpenAI predicts batch size based on Gradient Noise Scale (GNS)

GNS measures variation in data batches

• When GNS is small à keep batch size
• When GNS is large à increase batch size

Example

Intuition

Proposal



Proposals for Automatic Parameter Adaptation
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Control loop monitors training workers and 
use monitored metric to set parameters

Gradient second-order metrics

Gradient variance

Worker performance metrics

Control loop

Monitoring Adaptation

Workers



Open Challenges
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Can we design a distributed ML system that supports adaptation?

Design challenges:

• How to support different types of adaptation?
• How to adapt based on large volume of monitoring data?
• How to change parameters of stateful workers?



Existing Approaches for Adaptation
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1. No unified mechanisms for adaptation
AutoScaling
[MLSys’20]

Horovod
Elastic

PyTorch
Elastic

TensorFlow 
Elastic

Custom adaptation frameworks 
without generic APIs

2. Processing of 
monitoring data offline

Logs

3. Checkpoint-and-recover
Write 

checkpoint
Release 

resources
Acquire 

resources
Start training 

process
Read 

checkpoint

Many adaptation steps

Log analytics libraries



KungFu Overview
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Monitoring, communication and adaptation functions1. Adaptation policies

GNS Policy Elastic PolicyContributions

2. Embedding monitoring 
operators inside dataflow

Asynchronous collective communication layer

TensorFlow/PyTorch/Keras Workers

3. Distributed mechanisms 
for parameter adaptation

Monitoring training Adapting parameters

Dynamic worker membership tables

Supporting
different types 
of adaptation

Processing 
large volume 
of monitoring 
data

Consistent 
adaptation for 
stateful workers



Contribution 1
Adaptation Policies
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Adaptation Policies
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Monitoring

• grad_noise_scale
• grad_variance
• …

Communication

• allreduce
• broadcast
• …

Adaptation
• resize
• set_tree
• …

Goal: Express adaptation over 
control loop for parameters

Write adaptation policies using expressive API functions:

Policy Policy

Monitoring Adaptation

Communication

Workers



Step NStep N

Example: Adaptation Policy for GNS

12

Step N Step N+1

Policy

Optimizer

Hook

1. Adaptation logic in policy functions

opt = SGDOptimizer(…)
opt = kf.Optimizer(opt)

import kungfu as kf

class GNSPolicy(kf.BasePolicy) 
def after_step(self):
gns = kf.grad_noise_scale()
avg = kf.allreduce(gns, `avg`)
if avg > self.prev:

kf.resize(kf.size() + 1)

3. KungFu Hook enables the policy

hook = kf.Hook(GNSPolicy(…))
model, data = …
model.train(data, opt, hook)

2. KungFu Optimizer 
enables monitoring



Contribution 2
Embedding Monitoring Inside Dataflow
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Embedding Monitoring Inside Dataflow
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Problem: High monitoring cost reduces adaptation benefit
Idea: Improve efficiency by adding monitoring operators to dataflow graph

gradient1

gns1

gradient3

gradient2

allreduce1

gns3 allreduce3

gns2 allreduce2

Dataflow
graph

Monitoring takes advantage of optimisations in dataflow engines and 
collective communication operations

Gradient-Noise-Scale 
Operator

Allreduce 
Operator

Gradient Dataflow 
Operator



Challenges of Dataflow Collective Communication
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1. Dataflow engine 
launches operators 
asynchronously

Coordinating synchronous allreduce prevents systems from scaling

allreduce1

allreduce2

Worker 0 Worker 1

allreduce1

allreduce2

Time
allreduce1

allreduce2

allreduce2

allreduce1

2. Message-Passing-Interface (MPI) requires synchronous execution

Problem: Collective communication reduces dataflow performance

Allreduce operator



Making Collective Communication Asynchronous
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allreduce1

Worker 0 Worker 1

allreduce2

Time

Idea: Use asynchronous collective communication
Collective Message

key data key controldata 

Collective State

allreduce1 3. Pass complete 
result downstream

1. Pass message 
asynchronously

2. Maintain 
allreduce state

No need for coordination in asynchronous collective communication



Contribution 3 
Distributed Mechanisms for Parameter Adaptation
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Issues When Adapting System Parameters

18

gns allreduce avg

Other system parameters
• Worker ranks
• Communication topology
• …

10

Problem: Parameter adaptation affects state consistency

Value of # workers

Dataflow for averaging GNS

Adapting system parameters therefore often requires system restart



Distributed Mechanism for Parameter Adaptation 
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2. Update worker membership using 
collective communication

gns allreduce avg

size_op

Dynamic worker membership

KungFu communication layer

1. System parameters as 
computational operators 

Idea: Decouple system parameters with dataflow state

MembershipMembership

Parameter update

Online parameter adaptation is consistent and fast



Experimental Evaluation
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How Effectively Does KungFu Adapt?
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GNS policy, CIFAR-10 ResNet, 4 GPUs
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Small batch size reaches high accuracy, but converges slowly

Small batch size



How Effectively Does KungFu Adapt?
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Large batch size finishes quickly, but accuracy suffers

Large batch size

GNS policy, CIFAR-10 ResNet, 4 GPUs



How Effectively Does KungFu Adapt?
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GNS predicts the effective batch size should increase during training

Batch size over time

GNS policy, CIFAR-10 ResNet, 4 GPUs



How Effectively Does KungFu Adapt?
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Embedded monitoring and online adaptation are important to Adaptation Policies

Dynamic batch size

GNS policy, CIFAR-10 ResNet, 4 GPUs



What is KungFu’s Distributed Performance?
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Asynchronous collective communication enables KungFu to scale better

Compare KungFu with state-of-the-art library (Horovod)

52% gap

32 VMs, K-80 GPU, ImageNet ResNet
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Conclusions: KungFu
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KungFu @ Github
https://github.com/lsds/KungFu

KungFu makes distributed machine learning adaptive
- Current systems have no unified mechanism for adaptation

Adaptation Policies

Asynchronous collective communication

Dynamic worker membership tables

1. Adaptation policies that realise complex adaptation

2. Embedding monitoring inside dataflow

3. Distributed mechanisms for consistent adaptation


