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The Rise of
Deep Learning

Self-driving RecommendationPersonal Assistant ArtSearch Engine

Image Recognition Speech Recognition Natural Language Generative Model Graph Model
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DL Frameworks Bridge the Gap of Models and Hardware
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Modern Accelerators

NVIDIA GPU AMD GPU

Graphcore IPUTPU

Deep Neural Network (DNN) Models

[Barret Zoph, et.al., CVPR’18]

[Chuxu Zhang, et.al., KDD’19]

[Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/]
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Existing Approach

- DNN is usually modeled as a dataflow graph (DFG)

- DFG naturally contains two levels of parallelism
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Existing Approach: Two-Layer Architecture

- DFG scheduler exploits inter-op parallelism
- Emit operators that are ready for execution

- Operators are treated as opaque library functions

- Hardware scheduler exploits intra-op parallelism
- Map intra-op computation to parallel execution units 

(EUs)
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Limitations of Existing Two-Layer Architecture

- Two-layer architecture works well when:
- Schedule overhead is negligible

- Intra-op parallelism can saturate all EUs

- However, this is often not the case in practice
- Accelerators are becoming more and more powerful

- P100 (9.3 Tflops) -> RTX 3090 (35.6 Tflops)

- Low GPU utilization
- 2% ~ 62% utilization

- High operator scheduling overheads
- 38% ~ 65% non-kernel time
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All data are reported on the inference task (BS=1) of 6 models 
on a V100 GPU (more details in paper).
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Limitations of Existing Two-Layer Architecture
- Overlook the subtle interplay of inter- and intra- op parallelism
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Rammer

- Key idea: manage the scheduling of inter- and intra- operator together
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Rammer

- Challenge 1: operators are opaque functions and 
do not expose fine-grained intra-op parallelism
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Rammer

- Challenge 1: operators are opaque functions and 
do not expose fine-grained intra-op parallelism

- Solution: rTask-Operator (rOperator) abstraction
- Expose fine-grained intra-op parallelism

- A group of independent, homogeneous rTasks

- rTask is the minimum computation unit on an EU
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Rammer

- Challenge 2: accelerators (e.g., GPU) do not 
expose interfaces for intra-op scheduling

- Solution: virtualized parallel device abstraction
- Expose hardwares’ fine-grained scheduling capability

- Decouple scheduling from hardware devices

- Bypass the hardware scheduler
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Rammer

- Challenge 3: fine-grained scheduling could incur 
even more scheduling overheads

- Observation: predictability of DNN computation
- Most DNN’s DFG is available at the compile time

- Operators exhibit deterministic performance
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rProgram

Static map

rTask-aware DFG Compiler

rTask

Rammer
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Add
Relu

Conv2d

Matmul- Challenge 3: fine-grained scheduling could incur 
even more runtime overheads

- Observation: predictability of DNN computation
- Most DNN’s DFG is available at the compile time

- Operators exhibit deterministic performance

- Solution: generate execution plan (rProgram) at 
compile time

- Mechanism: scheduling interfaces & profiler

- Policy: wavefront scheduling policy



Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

rProgram

Static map

rTask-aware DFG Compiler

Rammer
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rProgram

Static map

rTask-aware DFG Compiler

Rammer

- Wavefront scheduling policy
- Each rOperator has different kernel implementations

- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not 
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op 
interplay if current wave saturates all EUs
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rProgram

Static map

rTask-aware DFG Compiler

Rammer

- Wavefront scheduling policy
- Each rOperator has different kernel implementations

- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not 
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op 
interplay if current wave saturates all EUs
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rProgram

Static map

rTask-aware DFG Compiler

Rammer

- Wavefront scheduling policy
- Each rOperator has different kernel implementations

- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not 
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op 
interplay if current wave saturates all EUs
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Case Study: LSTM-TC-BS4
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Baseline: two-layer architecture with compiler optimizations (e.g., kernel fusion, kernel tuning)

+ co-schedule (fastest kernels): operator co-scheduling on fastest kernels (same kernels as Baseline)

+ interplay: operator co-scheduling with interplay of inter-/intra- operator parallelism
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All data are reported on the inference task on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on CUDA GPU
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All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)
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All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)

- up to 20.12x speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)
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All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)

- up to 20.12x speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)

- up to 6.46x speedup over TVM-0.7 (with AutoTVM) (SOTA DL compiler)

22

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)

- up to 20.12x speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)

- up to 6.46x speedup over TVM-0.7 (with AutoTVM) (SOTA DL compiler)

- up to 3.09x speedup over TensorRT-7.0 (SOTA vendor optimized proprietary library)
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All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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GPU Utilization

- The average GPU utilization of TensorFlow is only 20.3%
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All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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GPU Utilization

- The average GPU utilization of TensorFlow is only 20.3%

- Rammer can improve the average GPU utilization by 4.32x
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All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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GPU Utilization

- The average GPU utilization of TensorFlow is only 20.3%

- Rammer can improve the average GPU utilization by 4.32x

- Compared to RammerBase, Rammer’s scheduling by itself can improve the 
utilization by 1.61x
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All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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Scheduling Overhead

- RammerBase reduces avg. overhead from 32.29 ms to 2.27 ms over TensorFlow
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All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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Scheduling Overhead

- RammerBase reduces avg. overhead from 32.29 ms to 2.27 ms over TensorFlow

- Rammer can further reduce avg. overhead to 0.37 ms over RammerBase
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All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on AMD GPU

- 13.95x speedup over TensorFlow-1.15.2 on average (SOTA DL framework)

- 5.36x speedup over TVM-0.7 on average (with AutoTVM) (SOTA DL compiler)
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End-to-end Performance on GraphCore IPU

Our preliminary implementation shows:

- up to 5.37x performance improvement compared with RammerBase
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Rammer Open Source Implementation

- 52K lines of C++ code

- Support TensorFlow, ONNX, and 
PyTorch (TorchScript) as frontends

- Support NVIDIA GPU, AMD GPU 
and Graphcore IPU as backends

- More details in paper:
- Implementation on CUDA GPU

- Implementation on AMD ROCm GPU

- Implementation on Graphcore IPU
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https://github.com/microsoft/nnfusion

https://github.com/microsoft/nnfusion
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Conclusion

- Rammer: holistic approach to manage the parallelism in DNN for scheduling

- Hardware neutral solution
- rTask-Operator Abstraction: expose fine-grained intra-operator parallelism

- Virtualized Parallel Device: expose hardwares’ fine-grained scheduling capability
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Thank you!

https://github.com/microsoft/nnfusion

Contact: NNFusion Team (nnfusion-team@microsoft.com)

Check it out!

https://github.com/microsoft/nnfusion
mailto:nnfusion-team@microsoft.com

