14th USENIX Symposium on Operating Systems Design and Implementation (OSDI’20)

Rammer:
Enabling Holistic Deep Learning Compiler Optimizations with riasks

Lingxiao Ma ~"®, Zhigiang Xie *°, Zhi Yang ", Jilong Xue ¢, Youshan Miao ¢,
Wei Cui ®, Wenxiang Hu ¢, Fan Yang ?, Lintao Zhang ®, Lidong Zhou ¢

t Peking University
T ShanghaiTech University

O Microsoft Research

* Equal contribution

T » g AT e . Microsoft’
ANELFES, () £18 A Bk
2t/ PEKING UNIVERSITY Xomiigsy/ ShanghaiTech University esea rc

AR&LBE
L &
1 &
T

Recommendation

o Do Po

Self-driving Personal Assistant Search Engine

The Rise of
Deep Learning

IIEDEIEI=I
NRLEEESHEn

Image Recognition Speech Recognition Natural Language Generative Model Graph Model

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

DL Frameworks Bridge the Gap of Models and Hardware

Deep Neural Network (DNN) Models Modern Accelerators

T O &

4y 4

R ADE ON INSTINCT

[Barret Zoph

heterogeneous graph

#
A R K D NVIDIA GPU AMD GPU

Graphcore IPU

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Existing Approach 1F () i;%% m @ .

- DNN is usually modeled as a dataflow graph (DFG)
- DFG naturally contains two levels of parallelism

Intra-op parallelism
independent
homogeneous

Inter-op
parallelism

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Existing Approach: Two-Layer Architecture

- DFG scheduler exploits inter-op parallelism @
- Emit operators that are ready for execution @ @
- Operators are treated as opaque library functions @

DFG of Operatorsl

DFG Scheduler

Operatorl(Opaque library function)

- Hardware scheduler exploits intra-op parallelism T
- Map intra-op computation to parallel execution units L]0
(EUs) Hardware Scheduler
Execution Time D

[] [] [] [] [] []

Launch Kernel

oo [o o[

Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Limitations of Existing Two-Layer Architecture

- Two-layer architecture works well when: @
- Schedule overhead is negligible @ @
- Intra-op parallelism can saturate all EUs @

- However, this is often not the case in practice DFG of Operatorsl

- Accelerators are becoming more and more powerful DFG Scheduler
- P100 (9.3 Tflops) -> RTX 3090 (35.6 Tflops)

Operatorl(Opaque library function)

- Low GPU utilization % % %

- 2% ~ 62% utilization

Hardware Scheduler D
- High operator scheduling overheads 4 cecution Time
- 38% ~ 65% non-kernel time [] [] [] [] L] L]

Launch Kernel

All data are reported on the inference task (BS=1) of 6 models “

on a V100 GPU (more details in paper). Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Limitations of Existing Two-Layer Architecture

- Overlook the subtle interplay of inter- and intra- op parallelism

Execution of Two-Layer Architecture Optimized Execution

A Execution Time A Execution Time

Launch Conv2d

[] [] [] [] [] []

Launch Matmul Launch Matmul and Conv2d

> >

Accelerator Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer

- Key idea: manage the scheduling of inter- and intra- operator together

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

DFG of operators

Rammer @‘?&@

- Challenge 1: operators are opaque functions and
do not expose fine-grained intra-op parallelism

Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Conv2d

DFG of rOperators
Rammer

- Challenge 1: operators are opaque functions and
do not expose fine-grained intra-op parallelism

- Solution: rTask-Operator (rOperator) abstraction
- Expose fine-grained intra-op parallelism
- A group of independent, homogeneous rTasks
- rTask is the minimum computation unit on an EU

Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Conv2d

DFG of rOperators
Rammer

- Challenge 2: accelerators (e.g., GPU) do not
expose interfaces for intra-op scheduling

- Solution: virtualized parallel device abstraction
- Expose hardwares’ fine-grained scheduling capability
- Decouple scheduling from hardware devices
- Bypass the hardware scheduler

Virtualized Parallel Device (vDevice

-

—

Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Conv2d

DFG of rOperators
Rammer

- Challenge 3: fine-grained scheduling could incur
even more scheduling overheads

- Observation: predictability of DNN computation
- Most DNN’s DFG is available at the compile time
- Operators exhibit deterministic performance

Z 60

e 50 L. Averaged Time

£ 40 Standard Error g e O N e
£ 30 VEU i VEU § VEU 3 VEU J§ VEU § VEU .
g %8 7% std. error in avg. Virtualized Parallel Device (vDevice)

Q' T

o 0

0 200 400 600 800 1000 1200 1400 1600 1800
Operator ID (sorted by average latency)

The profiled /<.erne/ time of q// the operators in ResNeXt model.
Each data point ran 1,000 times.

Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Conv2d

DFG of rOperators
Rammer

- Challenge 3: fine-grained scheduling could incur
even more runtime overheads

- Observation: predictability of DNN computation
- Most DNN’s DFG is available at the compile time
- Operators exhibit deterministic performance

- Solution: generate execution plan (rProgram) at i
compile time |
- Mechanism: scheduling interfaces & profiler

Virtualized Parallel Device (vDevice

-

—

- Policy: wavefront scheduling policy l Static map
Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer

- Wavefront scheduling policy
- Each rOperator has different kernel implementations
- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

i Virtualized Parallel Device (vDevice)
l Static map
Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer Select fastest

kernel impl.

- Wavefront scheduling policy
- Each rOperator has different kernel implementations
- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

l Static map
Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer —

kernel impl.

- Wavefront scheduling policy
- Each rOperator has different kernel implementations
- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

l Static map
Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer Select fastest

kernel impl.

- Wavefront scheduling policy
- Each rOperator has different kernel implementations
- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

l Static map
Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Matmul:

Case Study: LSTM-TC-BS4

LSTM-TC (BS=4) P

40 Matmul:
35 16 rTasks
< 30 _ 7.46 us

Baseline + co-schedule + interplay

. Baseline: two-layer architecture with compiler optimizations (e.g., kernel fusion, kernel tuning)
. + co-schedule (fastest kernels): operator co-scheduling on fastest kernels (same kernels as Baseline)

. + interplay: operator co-scheduling with interplay of inter-/intra- operator parallelism

All data are reported on the inference task on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on CUDA GPU

RexNeXt NASNet AlexNet DeepSpeech2 LSTM-TC Seq2Seq-NMT
100 40 2 50 180 80

90 35 1.8 45 160 70

80 0 1.6 40 140
70 N 1.4 35 190
60 1.2 30 100
50 20 1 25 o0
40 15 0.8 20

60
30 o 0.6 15
20 0.4 10 I 40
10 0.2 l 20

< € <
NN & & €S & & /\ NN & & NN DRSPS
& <& Q:bd\\ <& %%@ ,\<< ,\<< Qg’@ & &

Latency (ms)

Ul

N . 0

A® /\Q‘
/\<< & @‘° /\<< & &

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on CUDA GPU

RexNeXt NASNet AlexNet DeepSpeech2 LSTM-TC Seq2Seq-NMT
100 40 2 50 180 80
90 : 4 160 = 70 ry
80
70 140 60
- 120 -
£ 60 100
> 50 40
c 80
8 60
30 20
10
10 20 ! u
0 0 = —
A® /8‘ < ~\>?,\
/\<< A @6‘ &S @6‘

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on CUDA GPU

RexNeXt NASNet AlexNet DeepSpeech2 LSTM-TC Seq2Seq-NMT
100 40 2 50 180 80
90 — 1.8 45 160
80 1.6 40 140
70 1.4 35
2 g0 1.2 30 120
£ : 100
> 50 1 25 2
[
g 40 0.8 20
— 30 0.6 15 60
20 0.4 10 40
10 0.2 5 20
\ 4
0 - L - 0 0 0
/\<< 2N <° 2N /\<< @ <& /\<< <°

Q:b

- up to 20.12x speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on CUDA GPU

RexNeXt NASNet AlexNet DeepSpeech2 LSTM-TC Seq2Seq-NMT
100 40 2 50 180 80
90 35 1.8 45 160 70
80 1.6 40
30 140 60
70 1.4 35 150
2 g0 25 1.2 30 50
£ : 100
> 50 20 1 25 40
c 80
g 40 0.8 20
= 15 60 30
- 30 10 0.6 15 -
20 0.4 10 40
10 L > 0.2 l 5 20 l |
0 0 0 0 0
A & ¥ 3§ & QD D
SRS ¥ & < NI /& & A RN /& 4 /&
/\<< i /\‘< Qg,@ /\<< v /\<< Qg,@ &N & &N Qg,@ /\<< AP\ @6‘

- up to 6.46x speedup over TVM-0.7 (with AutoTVM) (SOTA DL compiler)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on CUDA GPU

RexNeXt NASNet AlexNet DeepSpeech2 LSTM-TC Seq2Seq-NMT
100 40 2 50 180 80
90 35 1.8 45 160 70
80 1.6 40
30 140 60
70 1.4 35 120
2 4 25 1.2 30 50
£ : 100
> 50 20 1 25 40
o 15 - €0 30
® 30 10 0.6 15 20
20 0.4 10 I 40
i LI LEY " ARATE = R
0 L 0 0 0 u
ENPOPOIR @\ & C TS E o PSS o M4
,\<< <& (\\ ,\<< <& ((‘ <& <& Q:b@ ,\<< ,\<< Q\’bé\ <& <& Q@@

- up to 3.09x speedup over TensorRT-7.0 (SOTA vendor optimized proprietary library)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

GPU Utilization

100

N B O
© O o o

GPU Utilizaiton (%)

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2Seq

o

BTF RammerBase Rammer

- The average GPU utilization of TensorFlow is only 20.3%

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

GPU Utilization

100

00
o

(=2}
o

H
o

N
o

GPU Utilizaiton (%)

\ 4 | | |

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2Seq

IA n
I‘ »

o

BTF RammerBase Rammer

- The average GPU utilization of TensorFlow is only 20.3%

- Rammer can improve the average GPU utilization by 4.32x

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

GPU Utilization

100

H O O
© O o

T I .
NPT | .

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2Seq

N
o

GPU Utilizaiton (%)

o

B TF ® RammerBase Rammer
- The average GPU utilization of TensorFlow is only 20.3%
- Rammer can improve the average GPU utilization by 4.32x

- Compared to RammerBase, Rammer’s scheduling by itself can improve the
utilization by 1.61x

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Scheduling Overhead

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2Seq
9 1.8 9 50 80
zz 49% 18 61/: ; 38% N 56% 160 5% 35%
overhead '° ' 20 140 70
40 14 1.4 . 120 60
35
12 1.2
¥ 30 30 100 50
£
o 25
E
[

H

N

10 1 2%
kernel 25 80 40
8 0.8
15 204 ° oo 13 20 20
(1]

10 21% 04 10 20% 24% 36%
; |) u

0 0 0 0 0

BETF B RammerBase Rammer

- RammerBase reduces avg. overhead from 32.29 ms to 2.27 ms over TensorFlow

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Scheduling Overhead

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2Seq
9 1.8 9 50 80
zz 49% 18 61/: ; 38% N 56% 160 5% 35%
overhead '° ' 20 140 70
40 14 1.4 N 120 60
35
12 1.2
A 100 50
é’ 30 0 X 2% 2% 30
25 kernel . 08 B 25 80 40
g 20 . 20 60 30
= 0.6
15 204 ° ' 15 20
() 40
10 0 4 21% 0.4 10 20% 10% 24% 36%
. 3%, i 14% 0.2 5 20 gy E 25%
(1]
0 D 0 D 0 L 0 ‘j 0 = 0 -

BETF B RammerBase Rammer

- RammerBase reduces avg. overhead from 32.29 ms to 2.27 ms over TensorFlow

- Rammer can further reduce avg. overhead to 0.37 ms over RammerBase

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on AMD GPU

RexNeXt NASNet AlexNet DeepSpeech2 ;g9 LSTM-TC 160 S€d2Seq-NMT
180 30 9 140
140 7 100 500 120
= 120 20 6 100
£ 100 5 80 400
> 15 80
c 80 4 60 300 o
w 60 10 3
~ 40 ; 2 40 200 40
0 - I - 0
< @é‘é < (@Q} < (@Q} SN 6\6‘?} < 6\6‘?}
L L L "G "G

- 13.95x speedup over TensorFlow-1.15.2 on average (SOTA DL framework)
- 5.36x speedup over TVM-0.7 on average (with AutoTVM) (SOTA DL compiler)

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on GraphCore |IPU

DeepSpeech2
5.4 0.7 LSTM 0.35 SquSeq
5.2 0.6 0.3
> 0.5 0.25
4.8
0.4 0.2
4.6
0.3 0.15
4.4
4.2 0.2 0.1
4 0.1 - 0.05
3.8 0 0
RamerBase Rammer RamerBase Rammer RamerBase Rammer

Our preliminary implementation shows:

- up to 5.37x performance improvement compared with RammerBase

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

Rammer Open Source Implementation [gha | | e, |gemns,

https://github.com/microsoft/nnfusion AVAILABLE

1 TensorFlow € ONNX O PyTorch

REPRODUCED

52K lines of C++ code

i Rammer rOperator)

| DFG of rOperator Convertor

; To— - Support TensorFlow, ONNX, and

i e PyTorch (TorchScript) as frontends
! DFG Compiler

| Auto Kernel - Support NVIDIA GPU, AMD GPU

§ S and Graphcore IPU as backends

] rProgram

More details in paper:
- Implementation on CUDA GPU
NVIDIA GPU AMD GPU Graphcore IPU ! - Implementation on AMD ROCm GPU

13 — p| Modern - Implementation on Graphcore |IPU
i 2 J‘»t;‘: R A DE O N INSTINCT Accelerators

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

https://github.com/microsoft/nnfusion

Conclusion

- Rammer: holistic approach to manage the parallelism in DNN for scheduling

- Hardware neutral solution
- rTask-Operator Abstraction: expose fine-grained intra-operator parallelism
- Virtualized Parallel Device: expose hardwares’ fine-grained scheduling capability

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Thank you!

[]E&y]
o Walt:
i

https://github.com/microsoft/nnfusion

Contact: NNFusion Team (nnfusion-team@ microsoft.com)

https://github.com/microsoft/nnfusion
mailto:nnfusion-team@microsoft.com

