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DL Frameworks Bridge the Gap of Models and Hardware

Deep Neural Network (DNN) Models Modern Accelerators
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Existing Approach 1F () i;%% m @ .

- DNN is usually modeled as a dataflow graph (DFG)
- DFG naturally contains two levels of parallelism

Intra-op parallelism
independent
homogeneous

Inter-op
parallelism
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Existing Approach: Two-Layer Architecture

- DFG scheduler exploits inter-op parallelism @
- Emit operators that are ready for execution @ @
- Operators are treated as opaque library functions @

DFG of Operatorsl

DFG Scheduler

Operatorl(Opaque library function)

- Hardware scheduler exploits intra-op parallelism T
- Map intra-op computation to parallel execution units L]0
(EUs) Hardware Scheduler
Execution Time D

[ ] [ ] [ ] [] [ ] []

Launch Kernel

oo [o o[

Accelerator
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Limitations of Existing Two-Layer Architecture

- Two-layer architecture works well when: @
- Schedule overhead is negligible @ @
- Intra-op parallelism can saturate all EUs @

- However, this is often not the case in practice DFG of Operatorsl

- Accelerators are becoming more and more powerful DFG Scheduler
- P100 (9.3 Tflops) -> RTX 3090 (35.6 Tflops)

Operatorl(Opaque library function)

- Low GPU utilization % % %

- 2% ~ 62% utilization

Hardware Scheduler D
- High operator scheduling overheads 4 cecution Time
- 38% ~ 65% non-kernel time [ ] [ ] [ ] [ ] L] L]

Launch Kernel

All data are reported on the inference task (BS=1) of 6 models “

on a V100 GPU (more details in paper). Accelerator
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Limitations of Existing Two-Layer Architecture

- Overlook the subtle interplay of inter- and intra- op parallelism

Execution of Two-Layer Architecture Optimized Execution

A Execution Time A Execution Time

Launch Conv2d

[ ] [ ] [ ] [] [ ] [ ]

Launch Matmul Launch Matmul and Conv2d

> >

Accelerator Accelerator
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Rammer

- Key idea: manage the scheduling of inter- and intra- operator together
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DFG of operators

Rammer @‘?&@

- Challenge 1: operators are opaque functions and
do not expose fine-grained intra-op parallelism

Accelerator
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Conv2d

DFG of rOperators
Rammer

- Challenge 1: operators are opaque functions and
do not expose fine-grained intra-op parallelism

- Solution: rTask-Operator (rOperator) abstraction
- Expose fine-grained intra-op parallelism
- A group of independent, homogeneous rTasks
- rTask is the minimum computation unit on an EU

Accelerator
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Conv2d

DFG of rOperators
Rammer

- Challenge 2: accelerators (e.g., GPU) do not
expose interfaces for intra-op scheduling

- Solution: virtualized parallel device abstraction
- Expose hardwares’ fine-grained scheduling capability
- Decouple scheduling from hardware devices
- Bypass the hardware scheduler

Virtualized Parallel Device (vDevice

-

—

Accelerator
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Conv2d

DFG of rOperators
Rammer

- Challenge 3: fine-grained scheduling could incur
even more scheduling overheads

- Observation: predictability of DNN computation
- Most DNN’s DFG is available at the compile time
- Operators exhibit deterministic performance
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g %8 7% std. error in avg. Virtualized Parallel Device (vDevice)
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The profiled /<.erne/ time of q// the operators in ResNeXt model.
Each data point ran 1,000 times.

Accelerator
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Conv2d

DFG of rOperators
Rammer

- Challenge 3: fine-grained scheduling could incur
even more runtime overheads

- Observation: predictability of DNN computation
- Most DNN’s DFG is available at the compile time
- Operators exhibit deterministic performance

- Solution: generate execution plan (rProgram) at i
compile time |
- Mechanism: scheduling interfaces & profiler

Virtualized Parallel Device (vDevice

-

—

- Policy: wavefront scheduling policy l Static map
Accelerator
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Rammer

- Wavefront scheduling policy
- Each rOperator has different kernel implementations
- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

i Virtualized Parallel Device (vDevice)
l Static map
Accelerator
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Rammer Select fastest

kernel impl.

- Wavefront scheduling policy
- Each rOperator has different kernel implementations
- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

l Static map
Accelerator
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Rammer —

kernel impl.

- Wavefront scheduling policy
- Each rOperator has different kernel implementations
- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

l Static map
Accelerator
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Rammer Select fastest

kernel impl.

- Wavefront scheduling policy
- Each rOperator has different kernel implementations
- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

l Static map
Accelerator
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Matmul:

Case Study: LSTM-TC-BS4

LSTM-TC (BS=4) P

40 Matmul:
35 16 rTasks
< 30 _ 7.46 us

Baseline + co-schedule + interplay

. Baseline: two-layer architecture with compiler optimizations (e.g., kernel fusion, kernel tuning)
. + co-schedule (fastest kernels): operator co-scheduling on fastest kernels (same kernels as Baseline)

. + interplay: operator co-scheduling with interplay of inter-/intra- operator parallelism

All data are reported on the inference task on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on CUDA GPU

RexNeXt NASNet AlexNet DeepSpeech2 LSTM-TC Seq2Seq-NMT
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All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on CUDA GPU

RexNeXt NASNet AlexNet DeepSpeech2 LSTM-TC Seq2Seq-NMT
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- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on CUDA GPU

RexNeXt NASNet AlexNet DeepSpeech2 LSTM-TC Seq2Seq-NMT
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- up to 20.12x speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on CUDA GPU
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- up to 6.46x speedup over TVM-0.7 (with AutoTVM) (SOTA DL compiler)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on CUDA GPU
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- up to 3.09x speedup over TensorRT-7.0 (SOTA vendor optimized proprietary library)

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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GPU Utilization
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- The average GPU utilization of TensorFlow is only 20.3%

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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GPU Utilization
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- The average GPU utilization of TensorFlow is only 20.3%

- Rammer can improve the average GPU utilization by 4.32x

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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GPU Utilization
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- The average GPU utilization of TensorFlow is only 20.3%
- Rammer can improve the average GPU utilization by 4.32x

- Compared to RammerBase, Rammer’s scheduling by itself can improve the
utilization by 1.61x

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks



Scheduling Overhead
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- RammerBase reduces avg. overhead from 32.29 ms to 2.27 ms over TensorFlow

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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Scheduling Overhead

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2Seq
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- RammerBase reduces avg. overhead from 32.29 ms to 2.27 ms over TensorFlow

- Rammer can further reduce avg. overhead to 0.37 ms over RammerBase

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).
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End-to-end Performance on AMD GPU
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- 13.95x speedup over TensorFlow-1.15.2 on average (SOTA DL framework)
- 5.36x speedup over TVM-0.7 on average (with AutoTVM) (SOTA DL compiler)
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End-to-end Performance on GraphCore |IPU
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Our preliminary implementation shows:

- up to 5.37x performance improvement compared with RammerBase
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Rammer Open Source Implementation  [gha | | e, |gemns,

https://github.com/microsoft/nnfusion AVAILABLE

1 TensorFlow € ONNX O PyTorch

REPRODUCED

52K lines of C++ code

i Rammer rOperator )

| DFG of rOperator Convertor

; To— - Support TensorFlow, ONNX, and

i e PyTorch (TorchScript) as frontends
! DFG Compiler

| Auto Kernel - Support NVIDIA GPU, AMD GPU

§ S and Graphcore IPU as backends

] rProgram

More details in paper:
- Implementation on CUDA GPU
NVIDIA GPU AMD GPU Graphcore IPU ! - Implementation on AMD ROCm GPU

13 — p| Modern - Implementation on Graphcore |IPU
i 2 J‘»t;‘: R A DE O N INSTINCT Accelerators
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https://github.com/microsoft/nnfusion

Conclusion

- Rammer: holistic approach to manage the parallelism in DNN for scheduling

- Hardware neutral solution
- rTask-Operator Abstraction: expose fine-grained intra-operator parallelism
- Virtualized Parallel Device: expose hardwares’ fine-grained scheduling capability
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Thank you!
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https://github.com/microsoft/nnfusion

Contact: NNFusion Team (nnfusion-team@ microsoft.com)
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