
Rammer:
Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Lingxiao Ma *†♢, Zhiqiang Xie *‡♢, Zhi Yang †, Jilong Xue ♢, Youshan Miao ♢,

Wei Cui ♢, Wenxiang Hu ♢, Fan Yang ♢, Lintao Zhang ♢, Lidong Zhou ♢

† Peking University

‡ ShanghaiTech University

♢ Microsoft Research

* Equal contribution

14th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’20)

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks 2

The Rise of
Deep Learning

Self-driving RecommendationPersonal Assistant ArtSearch Engine

Image Recognition Speech Recognition Natural Language Generative Model Graph Model

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

DL Frameworks Bridge the Gap of Models and Hardware

3

Modern Accelerators

NVIDIA GPU AMD GPU

Graphcore IPUTPU

Deep Neural Network (DNN) Models

[Barret Zoph, et.al., CVPR’18]

[Chuxu Zhang, et.al., KDD’19]

[Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Existing Approach

- DNN is usually modeled as a dataflow graph (DFG)

- DFG naturally contains two levels of parallelism

4

Inter-op
parallelism

B

CA

C=AxB

Intra-op parallelism
independent
homogeneous

AddRelu

Conv2d

Matmul

Dataflow Graph

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Existing Approach: Two-Layer Architecture

- DFG scheduler exploits inter-op parallelism
- Emit operators that are ready for execution

- Operators are treated as opaque library functions

- Hardware scheduler exploits intra-op parallelism
- Map intra-op computation to parallel execution units

(EUs)

5

AddRelu

Conv2d

Matmul

DFG Scheduler

EU EU EU EU EU EU

Accelerator

Execution Time

Launch Kernel

DFG of Operators

Operator (Opaque library function)

Hardware Scheduler

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Limitations of Existing Two-Layer Architecture

- Two-layer architecture works well when:
- Schedule overhead is negligible

- Intra-op parallelism can saturate all EUs

- However, this is often not the case in practice
- Accelerators are becoming more and more powerful

- P100 (9.3 Tflops) -> RTX 3090 (35.6 Tflops)

- Low GPU utilization
- 2% ~ 62% utilization

- High operator scheduling overheads
- 38% ~ 65% non-kernel time

6

AddRelu

Conv2d

Matmul

DFG Scheduler

EU EU EU EU EU EU

Accelerator

Execution Time

Launch Kernel

DFG of Operators

Operator (Opaque library function)

Hardware Scheduler

All data are reported on the inference task (BS=1) of 6 models
on a V100 GPU (more details in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Limitations of Existing Two-Layer Architecture
- Overlook the subtle interplay of inter- and intra- op parallelism

7

AddRelu

Conv2d

Matmul

EU EU EU EU EU EU

Accelerator

Execution Time

Execution of Two-Layer Architecture

Launch Matmul

Launch Conv2d

EU EU EU EU EU EU

Accelerator

Execution Time

Launch Matmul and Conv2d

Optimized Execution

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer

- Key idea: manage the scheduling of inter- and intra- operator together

8

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer

- Challenge 1: operators are opaque functions and
do not expose fine-grained intra-op parallelism

9

AddRelu

Conv2d

Matmul

DFG of operators

EU EU EU EU EU EU

Accelerator

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer

- Challenge 1: operators are opaque functions and
do not expose fine-grained intra-op parallelism

- Solution: rTask-Operator (rOperator) abstraction
- Expose fine-grained intra-op parallelism

- A group of independent, homogeneous rTasks

- rTask is the minimum computation unit on an EU

10

EU EU EU EU EU EU

Accelerator

DFG of rOperators

rTask
Add

Relu

Conv2d

Matmul

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer

- Challenge 2: accelerators (e.g., GPU) do not
expose interfaces for intra-op scheduling

- Solution: virtualized parallel device abstraction
- Expose hardwares’ fine-grained scheduling capability

- Decouple scheduling from hardware devices

- Bypass the hardware scheduler

11

DFG of rOperators

EU EU EU EU EU EU

Accelerator

rTask
Add

Relu

Conv2d

Matmul

vEU vEU vEU vEUvEU vEU

Virtualized Parallel Device (vDevice)

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer

- Challenge 3: fine-grained scheduling could incur
even more scheduling overheads

- Observation: predictability of DNN computation
- Most DNN’s DFG is available at the compile time

- Operators exhibit deterministic performance

12

DFG of rOperators

EU EU EU EU EU EU

Accelerator

rTask
Add

Relu

Conv2d

Matmul

vEU vEU vEU vEUvEU vEU

Virtualized Parallel Device

vEU vEU vEU vEUvEU vEU

Virtualized Parallel Device (vDevice)7% std. error in avg.

The profiled kernel time of all the operators in ResNeXt model.
Each data point ran 1,000 times.

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

rProgram

Static map

rTask-aware DFG Compiler

rTask

Rammer

13

DFG of rOperators

EU EU EU EU EU EU

Accelerator

vEU vEU vEU vEUvEU vEU

Virtualized Parallel Device

rTask

vEU vEU vEU vEUvEU vEU

Virtualized Parallel Device (vDevice)

Add
Relu

Conv2d

Matmul- Challenge 3: fine-grained scheduling could incur
even more runtime overheads

- Observation: predictability of DNN computation
- Most DNN’s DFG is available at the compile time

- Operators exhibit deterministic performance

- Solution: generate execution plan (rProgram) at
compile time

- Mechanism: scheduling interfaces & profiler

- Policy: wavefront scheduling policy

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

rProgram

Static map

rTask-aware DFG Compiler

Rammer

14

EU EU EU EU EU EU

Accelerator

vEU vEU vEU vEUvEU vEU

Virtualized Parallel Device (vDevice)

rTask
- Wavefront scheduling policy

- Each rOperator has different kernel implementations

- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

Wave 0
Wave 1

Wave 2

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

rProgram

Static map

rTask-aware DFG Compiler

Rammer

- Wavefront scheduling policy
- Each rOperator has different kernel implementations

- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

15

EU EU EU EU EU EU

Accelerator

rTask
Wave 0

Select fastest
kernel impl.

vEU vEU vEU vEUvEU vEU

Virtualized Parallel Device (vDevice)

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

rProgram

Static map

rTask-aware DFG Compiler

Rammer

- Wavefront scheduling policy
- Each rOperator has different kernel implementations

- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

16

EU EU EU EU EU EU

Accelerator

rTask
Wave 1

Select efficient
kernel impl.

vEU vEU vEU vEUvEU vEU

Virtualized Parallel Device (vDevice)

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

rProgram

Static map

rTask-aware DFG Compiler

Rammer

- Wavefront scheduling policy
- Each rOperator has different kernel implementations

- Partition DFG into waves by BFS

- Select fastest kernels if current wave does not
saturate all EUs

- Select resource-efficient kernels for inter-/intra- op
interplay if current wave saturates all EUs

17

EU EU EU EU EU EU

Accelerator

rTask

vEU vEU vEU vEUvEU vEU

Virtualized Parallel Device (vDevice)

Wave 2

Select fastest
kernel impl.

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Case Study: LSTM-TC-BS4

18

Baseline: two-layer architecture with compiler optimizations (e.g., kernel fusion, kernel tuning)

+ co-schedule (fastest kernels): operator co-scheduling on fastest kernels (same kernels as Baseline)

+ interplay: operator co-scheduling with interplay of inter-/intra- operator parallelism

0

5

10

15

20

25

30

35

40

45

Baseline + co-schedule + interplay

Ti
m

e
(m

s)

LSTM-TC (BS=4)

2.6x

2.3x

Matmul:
1024 rTasks

4.28 us

Matmul:
1024 rTasks

4.28 us

Matmul:
16 rTasks
7.46 us

All data are reported on the inference task on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on CUDA GPU

19

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

0

10

20

30

40

50

60

70

80

90

100
RexNeXt

La
te

n
cy

 (
m

s)

0

5

10

15

20

25

30

35

40
NASNet

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
AlexNet

0

5

10

15

20

25

30

35

40

45

50
DeepSpeech2

0

20

40

60

80

100

120

140

160

180
LSTM-TC

0

10

20

30

40

50

60

70

80
Seq2Seq-NMT

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)

20

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

0

10

20

30

40

50

60

70

80

90

100
RexNeXt

La
te

n
cy

 (
m

s)

0

5

10

15

20

25

30

35

40
NASNet

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
AlexNet

0

5

10

15

20

25

30

35

40

45

50
DeepSpeech2

0

20

40

60

80

100

120

140

160

180
LSTM-TC

0

10

20

30

40

50

60

70

80
Seq2Seq-NMT

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)

- up to 20.12x speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)

21

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

0

10

20

30

40

50

60

70

80

90

100
RexNeXt

La
te

n
cy

 (
m

s)

0

5

10

15

20

25

30

35

40
NASNet

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
AlexNet

0

5

10

15

20

25

30

35

40

45

50
DeepSpeech2

0

20

40

60

80

100

120

140

160

180
LSTM-TC

0

10

20

30

40

50

60

70

80
Seq2Seq-NMT

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)

- up to 20.12x speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)

- up to 6.46x speedup over TVM-0.7 (with AutoTVM) (SOTA DL compiler)

22

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

0

10

20

30

40

50

60

70

80

90

100
RexNeXt

La
te

n
cy

 (
m

s)

0

5

10

15

20

25

30

35

40
NASNet

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
AlexNet

0

5

10

15

20

25

30

35

40

45

50
DeepSpeech2

0

20

40

60

80

100

120

140

160

180
LSTM-TC

0

10

20

30

40

50

60

70

80
Seq2Seq-NMT

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on CUDA GPU

- up to 33.94x speedup over TensorFlow-1.15.2 (SOTA DL framework)

- up to 20.12x speedup over TensorFlow-XLA-1.15.2 (SOTA DL compiler)

- up to 6.46x speedup over TVM-0.7 (with AutoTVM) (SOTA DL compiler)

- up to 3.09x speedup over TensorRT-7.0 (SOTA vendor optimized proprietary library)

23

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

0

10

20

30

40

50

60

70

80

90

100
RexNeXt

La
te

n
cy

 (
m

s)

0

5

10

15

20

25

30

35

40
NASNet

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
AlexNet

0

5

10

15

20

25

30

35

40

45

50
DeepSpeech2

0

20

40

60

80

100

120

140

160

180
LSTM-TC

0

10

20

30

40

50

60

70

80
Seq2Seq-NMT

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

GPU Utilization

- The average GPU utilization of TensorFlow is only 20.3%

24

0

20

40

60

80

100

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2Seq

G
P

U
 U

ti
liz

ai
to

n
 (

%
)

TF RammerBase Rammer

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

GPU Utilization

- The average GPU utilization of TensorFlow is only 20.3%

- Rammer can improve the average GPU utilization by 4.32x

25

0

20

40

60

80

100

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2Seq

G
P

U
 U

ti
liz

ai
to

n
 (

%
)

TF RammerBase Rammer

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

GPU Utilization

- The average GPU utilization of TensorFlow is only 20.3%

- Rammer can improve the average GPU utilization by 4.32x

- Compared to RammerBase, Rammer’s scheduling by itself can improve the
utilization by 1.61x

26

0

20

40

60

80

100

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2Seq

G
P

U
 U

ti
liz

ai
to

n
 (

%
)

TF RammerBase Rammer

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Scheduling Overhead

- RammerBase reduces avg. overhead from 32.29 ms to 2.27 ms over TensorFlow

27

49%

7%

3%

0

5

10

15

20

25

30

35

40

45

50

Ti
m

e
(m

s)

ResNeXt

64%

21%
14%

0

2

4

6

8

10

12

14

16

18

NASNet
38%

2% 2%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

AlexNet

56%

20% 10%

0

5

10

15

20

25

30

35

40

45

50

DeepSpeech2

59%

24%

8%
0

20

40

60

80

100

120

140

160

LSTM

65%

36% 25%

0

10

20

30

40

50

60

70

80

Seq2Seq

TF RammerBase Rammer

overhead

kernel

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Scheduling Overhead

- RammerBase reduces avg. overhead from 32.29 ms to 2.27 ms over TensorFlow

- Rammer can further reduce avg. overhead to 0.37 ms over RammerBase

28

49%

7%

3%

0

5

10

15

20

25

30

35

40

45

50

Ti
m

e
(m

s)

ResNeXt

64%

21%
14%

0

2

4

6

8

10

12

14

16

18

NASNet
38%

2% 2%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

AlexNet

56%

20% 10%

0

5

10

15

20

25

30

35

40

45

50

DeepSpeech2

59%

24%

8%
0

20

40

60

80

100

120

140

160

LSTM

65%

36% 25%

0

10

20

30

40

50

60

70

80

Seq2Seq

TF RammerBase Rammer

overhead

kernel

All data are reported on the inference task (BS=1) on a V100 GPU (more details and evaluation in paper).

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on AMD GPU

- 13.95x speedup over TensorFlow-1.15.2 on average (SOTA DL framework)

- 5.36x speedup over TVM-0.7 on average (with AutoTVM) (SOTA DL compiler)

29

La
te

n
cy

 (
m

s)

0

20

40

60

80

100

120

140

160

180
RexNeXt

0

5

10

15

20

25

30
NASNet

0

20

40

60

80

100

120

140
DeepSpeech2

0

1

2

3

4

5

6

7

8

9
AlexNet

0

100

200

300

400

500

600

700
LSTM-TC

0

20

40

60

80

100

120

140

160
Seq2Seq-NMT

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

End-to-end Performance on GraphCore IPU

Our preliminary implementation shows:

- up to 5.37x performance improvement compared with RammerBase

30

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

RamerBase Rammer

DeepSpeech2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RamerBase Rammer

LSTM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

RamerBase Rammer

Seq2Seq

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Rammer Open Source Implementation

- 52K lines of C++ code

- Support TensorFlow, ONNX, and
PyTorch (TorchScript) as frontends

- Support NVIDIA GPU, AMD GPU
and Graphcore IPU as backends

- More details in paper:
- Implementation on CUDA GPU

- Implementation on AMD ROCm GPU

- Implementation on Graphcore IPU

31

NVIDIA GPU AMD GPU Graphcore IPU

DFG of rOperator
rOperator
Convertor

Hand-tuned
Kernels

Auto Kernel
Generators
(e.g., TVM)

DFG Compiler

rProgram

Generated Device Code

Rammer

Modern
Accelerators
……

https://github.com/microsoft/nnfusion

https://github.com/microsoft/nnfusion

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Conclusion

- Rammer: holistic approach to manage the parallelism in DNN for scheduling

- Hardware neutral solution
- rTask-Operator Abstraction: expose fine-grained intra-operator parallelism

- Virtualized Parallel Device: expose hardwares’ fine-grained scheduling capability

32

Thank you!

https://github.com/microsoft/nnfusion

Contact: NNFusion Team (nnfusion-team@microsoft.com)

Check it out!

https://github.com/microsoft/nnfusion
mailto:nnfusion-team@microsoft.com

