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Distributed Storage Systems

Enable Today’s Web Services

————————————————————

—————————————————————

- O S S S S S S DS B DS D e e e e e



Distributed Storage Systems

Reads Dominate Workloads
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Distributed Storage Systems

Simple Reads Are Insufficient
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Read-Only Transactions

* A group of simple reads sent in parallel

* Do not write data
— Writes are allowed in the system

 Coordinate a consistent view across shards

Coordination overhead causes
higher latency and lower throughput




Read-only transaction
performance as close
as possible to simple reads



Read-only transaction
performance as close
as possible to simple reads

 What does optimal performance mean for read-only transactions?

 When is optimal performance achievable?

« How can we design performance-optimal read-only transactions?



Performance Factors
Engineering vs. Algorithmic
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Focus on the algorithmic
properties due to coordination

Equally impact simple reads
and read-only transactions

Abstract engineering factors
by comparing to simple reads



Performance Factors
Algorithmic Properties
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Performance Factors
Algorithmic Properties
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Performance Factors
Algorithmic Properties
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Performance Factors
Coordination Is Algorithmic
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Read-Only Transactions
Optimal Performance
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on-Blocking Reads

Do not wait on external events
— Distributed locks, timeouts, messages, etc.

* Lower latency
— Avoid any time spent blocking

* Higher throughput
— Avoid CPU cost of context switches



ne-Round Communication

One-round on-path reads
— Succeed in one round, i.e., no retries

No off-path messages
— Required by reads but off the critical path

Lower latency
— Avoids time for extra on-path messages

Higher throughput
— Avoids CPU cost of processing extra messages



onstant Metadata

 Metadata
— Information used to find a consistent view
— Timestamps, transaction IDs, etc.

e Size of metadata remains constant
regardless of contention

* Higher throughput
— Avoids CPU cost of processing extra data



Performance-optimal read-only
transactions are

on-blocking messages

that complete In
ne-round with
onstant metadata



trict Serializability

* The strongest consistency model
— Writing applications made easy

* Requires a total order + real-time order
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The NOCS Theorem:

for read-only
transaction algorithms to achieve
performance-optimality [ ]
and strict serializability [S]



Proof Intuition of NOCS
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Proof Intuition of NOCS
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NOC Designs
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Design Insight
Capturing the Stable Frontier
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Version Clock

* A type of logical clock
— Specialized for distributed storage systems

* Treat reads and writes differently
— Enable optimizations for reads and writes

» Capture the stable frontier



PORT Overview
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PORT Overview
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PORT Overview

Jack
Version Lo
H e}
Stamp I~
(VS) ~~ % =
: . Key A
- IAGIAT AL
Version )(\i ‘Ti ?;"
Clock "y i
VS

27



Write in PORT
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Read Iin Port

No tick
on reads



Read Promotion
Ensures a Total Order




Read Promotion
Ensures a Total Order
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Read Promotion
Ensures a Total Order
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Track Stable Frontier
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Read-Only Transaction Logic
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Read-Only Transaction Logic
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Read-Only Transaction Logic
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PORT Is NOC

* Reading at the stable frontier ensures
reads are non-blocking (N)

» Client pre-determined snapshot with VS
ensures one-round communication (O)

* One VS per read request ensure
constant metadata (C)



PORT Systems

. Scylla-PORT

— Base system: ScyllaDB (non-transactional)
* Highly optimized - sensitive to overhead

— NOC + Process-ordered serializability
— Supports simple writes (not write transactions)

* Eiger-PORT
— Base system: Eiger (N, @, ©)
» Existing read-only and write transactions
— NOC + Causal consistency
— Supports write transactions



Evaluation of Scylla-PORT

 To understand

— Overhead in latency and throughput compared to
simple reads

— Performance advantages compared to other
protocols, e.g., OCC.

* Experiment configuration

— YCSB benchmark with customized parameters for
skew and read-to-write ratios

— Evaluated latency, throughput, scalability, freshness

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

AVAILABLE REPRODUCED
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Average Latency (ms)
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Conclusion

Performance-optimal read-only transactions: NOC

The NOCS Theorem for read-only transactions
— Impossible to have all of the NOCS properties

The design of PORT
— NOC with the strongest consistency to date

Scylla-PORT
— Minimum performance overhead compared to simple reads
— Significantly outperforms the standard OCC
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