Performance-Optimal
Read-only Transactions

Siddhartha Sen*, Wyatt Lloyd*

*Princeton University, “Microsoft Research

Distributed Storage Systems

Enable Today’s Web Services

————————————————————

—————————————————————

- O S S S S S S DS B DS D e e e e e

Distributed Storage Systems

Reads Dominate Workloads

————————————————————

: Web : 'l E: (V]
Load | — : : E/. . \ﬂ i
Page | : | e ===y
o | R Mia’s Page
I ° [| ,
. Jack’s Page
. — - Reads St
Friend i | orage
° |
4 P g
T
. | | e
! e | LB
|| Wites Ukriend Lists =
\ =
\] .

—————————————————————

- O S S S S S S DS B DS D e e e e e

Distributed Storage Systems

Simple Reads Are Insufficient

Unfriend I
hma
[N

Jack

——————

- e e e e .

——————

Friends Vv

[\
' Web | |
= | New I
' page |
) ——— 1

gun Emm

G EEE I I Ea S S S e e e e .y

// S
i)

[/'—\ﬂ =

E - = ;:. | » < .f

—— Mia’s Page
JdelvsPage

Storage

i !

e

= i)
Friend Lists =

———————————————

- O S S S S S S DS B DS D e e e e e

Read-Only Transactions

* A group of simple reads sent in parallel

* Do not write data
— Writes are allowed in the system

 Coordinate a consistent view across shards

Coordination overhead causes
higher latency and lower throughput

Read-only transaction
performance as close
as possible to simple reads

Read-only transaction
performance as close
as possible to simple reads

 What does optimal performance mean for read-only transactions?

 When is optimal performance achievable?

« How can we design performance-optimal read-only transactions?

Performance Factors
Engineering vs. Algorithmic

Coordination

Batching

Networking

Hardware

!

Algorithmic
Properties

Engineering
Factors

Focus on the algorithmic
properties due to coordination

Equally impact simple reads
and read-only transactions

Abstract engineering factors
by comparing to simple reads

Performance Factors
Algorithmic Properties

_ - - . Algorithmic ._ _ _
Properties

\

Blocking

- e e e e o e .

Performance Factors
Algorithmic Properties

_ - - . Algorithmic ._ _ _

\

Properties %, | | oT===s
Blocking

Messages
0 Page

- e e e e o e .

Performance Factors
Algorithmic Properties

_ - - . Algorithmic ._ _ _

" Properties N ol e ~
|
: Blocking l ‘Tlmestamp ” \ f T
| I Em
I | - e
I e O
: Messages ! -—— == [
|
|
!
" Metadata |

E
A
E-(
I

(\

I I

I |

I |

[|

(1 | |
Page

: &) : :

I

: I Q : |

I

: |

[|

I |

. I I

I |

I |

Friends

/

oom EEm mEm Em o o o e E—

Performance Factors
Coordination Is Algorithmic

_ - - . Algorithmic ._ _ _
Properties

\

Coordination
Overhead

- e e e e o e .

12

Read-Only Transactions
Optimal Performance

_ - - . Algorithmic ._ _ _

" Properties Y
| .
| Blocking | Performance-optimal
| N — Read-onl
: Messages IS _ y
" Metadata o) | Transactions
\

=) (N,0,C)

13

on-Blocking Reads

Do not wait on external events
— Distributed locks, timeouts, messages, etc.

* Lower latency
— Avoid any time spent blocking

* Higher throughput
— Avoid CPU cost of context switches

ne-Round Communication

One-round on-path reads
— Succeed in one round, i.e., no retries

No off-path messages
— Required by reads but off the critical path

Lower latency
— Avoids time for extra on-path messages

Higher throughput
— Avoids CPU cost of processing extra messages

onstant Metadata

 Metadata
— Information used to find a consistent view
— Timestamps, transaction IDs, etc.

e Size of metadata remains constant
regardless of contention

* Higher throughput
— Avoids CPU cost of processing extra data

Performance-optimal read-only
transactions are

on-blocking messages

that complete In
ne-round with
onstant metadata

trict Serializability

* The strongest consistency model
— Writing applications made easy

* Requires a total order + real-time order

\ '
[jjj‘l NeDdrege i (—
Aod, =T

/

|

|

|

|

| Jack

|

| / \
I Read v E mmp
I | < Us
| | = !
| Mia ! | Friends |

The NOCS Theorem:

for read-only
transaction algorithms to achieve
performance-optimality []
and strict serializability [S]

Proof Intuition of NOCS

[| I I
< I_s.table | | I_unstable:|—>i

Svr-1 S S
< 1
d Unfinalized

Svr-2 3 S
: Coordlnatlon

)

Svr-3)
< Requwed

b

Svr-4 S

Write

now

20

Proof Intuition of NOCS

< Establej I [unstable]—»E

Svr-{ —o———m—m—me—eo—

Svr-2

‘Must give

up either l-.->

Svr-3

Svr-4

NOC Designs
/ Ser,%,“ty'\—V By the NOCS Theorem

Process-
/ Ser.Mmy Our new design:
O
c
I ®
? o
®

X
@
gq’ / Causal \

/ Read M’tted ’—\—P MySQL Cluster

/ Weak Consistency \

Design Insight
Capturing the Stable Frontier

< Establej I [unstable]—>

Svr-1 —o————or—ouwus—o0—

| :
I 1
Svr-2 ——e———e—
|
|

Svr-3 ——o——
l

| :
Svr-4 ——b——>—o6———06—6
Stable :
Frontier

(SF)

now

Version Clock

* A type of logical clock
— Specialized for distributed storage systems

* Treat reads and writes differently
— Enable optimizations for reads and writes

» Capture the stable frontier

PORT Overview

Jack

E I:J:c‘-ﬂ
|; ..II:

Web Storage
Client Server

25

PORT Overview

S
A Key A
! [Axlo [Av] [AzZ]>

Version
Clock

PORT Overview

Jack
Version Lo
H e}
Stamp I~
(VS) ~~ % =
: . Key A
- IAGIAT AL
Version)(\i ‘Ti ?;"
Clock "y i
VS

27

Write in PORT

Write{ C;_AY L

<

“Done”

Version
clocks tick
on writes

Read Iin Port

No tick
on reads

Read Promotion
Ensures a Total Order

Read Promotion
Ensures a Total Order

o). (D

31

Read Promotion
Ensures a Total Order

A=A
Write{vs_ N Lo

<

“Done”

Track Stable Frontier

SF Map
SF=3
SFA = 3
SFr =3 / \
SFB _5 Read/Write g (R
C~ >
< T
SFA = 3 | ® < g
----------- Key A ——

Advance to
stable frontier

33

Read-Only Transaction Logic

SF Map

SF=3

SFA:3
SFB:3
SFC:5

- [Bdo [Byl; [Byls -

34

Read-Only Transaction Logic

SF Map

SF=3

SFA:3
SFB:3
SFC:5

[Bx]o [BY] l Bz]s

35

Read-Only Transaction Logic

SF Map

SF =3

SFA=3
SFB:3
SFC:5

36

PORT Is NOC

* Reading at the stable frontier ensures
reads are non-blocking (N)

» Client pre-determined snapshot with VS
ensures one-round communication (O)

* One VS per read request ensure
constant metadata (C)

PORT Systems

. Scylla-PORT

— Base system: ScyllaDB (non-transactional)
* Highly optimized - sensitive to overhead

— NOC + Process-ordered serializability
— Supports simple writes (not write transactions)

* Eiger-PORT
— Base system: Eiger (N, @, ©)
» Existing read-only and write transactions
— NOC + Causal consistency
— Supports write transactions

Evaluation of Scylla-PORT

 To understand

— Overhead in latency and throughput compared to
simple reads

— Performance advantages compared to other
protocols, e.g., OCC.

* Experiment configuration

— YCSB benchmark with customized parameters for
skew and read-to-write ratios

— Evaluated latency, throughput, scalability, freshness

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

AVAILABLE REPRODUCED

Average Latency (ms)

Latency-Throughput

5.5
4.5
3.5
2.5
1.5
0.5

Uniform, 5% Writes

Scylla-OCC —e—
Scylla-PORT —e—
ScyllaDB —+—

Higher
Throughput

Lower
Latency

0 50 100 150 200 250
Throughput (K Txn/s)

40

Average Latency (ms)

Latency-Throughput

Zipf = 0.99, 5% Writes

- Scylla-OCC —e—
i Scylla-PORT —e—
ScyllaDB

0 50 100 150 200

Throughput (K Txn/s)

41

Conclusion

Performance-optimal read-only transactions: NOC

The NOCS Theorem for read-only transactions
— Impossible to have all of the NOCS properties

The design of PORT
— NOC with the strongest consistency to date

Scylla-PORT
— Minimum performance overhead compared to simple reads
— Significantly outperforms the standard OCC

~ Contact Information
| Haonan Lu
- haonanl@cs.princeton.edu

