
Performance-Optimal
Read-only Transactions

Haonan Lu★
Siddhartha Sen✢, Wyatt Lloyd★

1

★Princeton University, ✢Microsoft Research

Distributed Storage Systems
Enable Today’s Web Services

2

Storage

Web

Jack

Mia

Jack’s Page

Friend Lists

Mia’s Page

Load
Page

Friend
Jack

Read

Write

Distributed Storage Systems
Reads Dominate Workloads

3

Storage

Web

Jack

Mia

Jack’s Page

Friend Lists

Mia’s Page

Load
Page

Friend
Jack

Reads

Writes

Distributed Storage Systems
Simple Reads Are Insufficient

4

Storage

Web

Jack

Mia

Jack’s Page

Friend Lists

Mia’s Page

Load
Page

Unfriend
Mia

Read

Friends✔

Unfriended

New Page

New Page

Read

New
Page

New
page

Read-Only Transactions

5

• A group of simple reads sent in parallel

• Do not write data
– Writes are allowed in the system

• Coordinate a consistent view across shards

Coordination overhead causes
higher latency and lower throughput

6

Read-only transaction
performance as close

as possible to simple reads

Goal:

7

Read-only transaction
performance as close

as possible to simple reads

Goal:

We answer:
• What does optimal performance mean for read-only transactions?

• When is optimal performance achievable?

• How can we design performance-optimal read-only transactions?

Performance Factors
Engineering vs. Algorithmic

8

Engineering
Factors

• Equally impact simple reads
and read-only transactions

• Abstract engineering factors
by comparing to simple reads

Hardware

Networking

Batching

Coordination Algorithmic
Properties

…

• Focus on the algorithmic
properties due to coordination

9

Page

Friends
Simple
Read

Blocking

Simple
Read

Performance Factors
Algorithmic Properties

Algorithmic
Properties

10

Page

Friends
Simple
Read

Messages

Blocking

Simple
Read

Algorithmic
Properties

Performance Factors
Algorithmic Properties

11

Page

Friends
Simple
Read

Messages

Blocking

Metadata

Simple
Read

Timestamp

Algorithmic
Properties

Timestamp

Performance Factors
Algorithmic Properties

12

Simple
Read

More
Messages

Blocking

Metadata

Simple
Read

Coordination
Overhead

Algorithmic
Properties

Performance Factors
Coordination Is Algorithmic

13

Simple
Read Simple

Read

Performance-optimal
Read-only

Transactions
(N,O,C)

Blocking

Metadata

N

O
C

Messages

Read-Only Transactions
Optimal Performance

Algorithmic
Properties

Non-Blocking Reads
• Do not wait on external events
– Distributed locks, timeouts, messages, etc.

• Lower latency
– Avoid any time spent blocking

• Higher throughput
– Avoid CPU cost of context switches

14

One-Round Communication
• One-round on-path reads
– Succeed in one round, i.e., no retries

• No off-path messages
– Required by reads but off the critical path

• Lower latency
– Avoids time for extra on-path messages

• Higher throughput
– Avoids CPU cost of processing extra messages

15

Constant Metadata
• Metadata
– Information used to find a consistent view
– Timestamps, transaction IDs, etc.

• Size of metadata remains constant
regardless of contention

• Higher throughput
– Avoids CPU cost of processing extra data

16

17

Performance-optimal read-only
transactions are NOC:

Non-blocking messages
that complete in
One-round with
Constant metadata

Strict Serializability
• The strongest consistency model
–Writing applications made easy

• Requires a total order + real-time order

18

Page

Friends

Jack
Add
Mia

New Page

New

Mia✔Mia

Done

DoneRead

ReadFriends✔

New
Page

19

The NOCS Theorem:
Impossible for read-only

transaction algorithms to achieve
performance-optimality [N,O,C]

and strict serializability [S]

Proof Intuition of NOCS

20

Svr-1

now

stable unstable

Coordination

Free

Coordination

Required

Finalized
Write

Unfinalized
WriteSvr-2

Svr-3

Svr-4

21

now

stable unstable

?

ROTXN

?

Must give
up either
N, O, or C

Svr-1

Svr-2

Svr-3

Svr-4

Proof Intuition of NOCS

NOC Designs

22

Weak Consistency

Strict
Serializability

Process-order
Serializability

Read Committed

Causal

St
ro
ng

W
ea

k

MySQL Cluster

By the NOCS Theorem

Our new design: PORT

23

now

Svr-1

Svr-2

Svr-3

Svr-4
Stable

Frontier
(SF)

Design Insight
Capturing the Stable Frontier

stable unstable

• A type of logical clock
– Specialized for distributed storage systems

• Treat reads and writes differently
– Enable optimizations for reads and writes

• Capture the stable frontier

24

Version Clock

25

Storage
Server

Web
Client

PORT Overview

Jack

26

Key A
[AX]0 [AY]1 [AZ]2

Version
Clock

PORT Overview

Jack

27

Key A
[AX]0 [AY]1 [AZ]2

Version
Clock

Version
Stamp

(VS)

VS

PORT Overview

Jack

1

28

Key A

Write in PORT

[AX]0 [AY]2

12

Write A := AY

VS = 2

Version
clocks tick
on writes

“Done”

Jack

29

Key A

Read in Port

[AX]0 [AY]2 [AZ]5

12

Read A = ?
VS = 2

No tick
on reads

A = AY

Jack

30

Key A
12

Read A = ?
VS = 2

Read Promotion
Ensures a Total Order

[AX]0 [?]2

Jack

31

Key A
12

Read A = ?
VS = 2

A = AX

Read Promotion
Ensures a Total Order

[AX]1 [AX]2[AX]0 Immutable

Jack

32

Key A

Read Promotion
Ensures a Total Order

[AX]0à2 [AY]3

Write VS = 2
A := AY

“Done”

Mia

12

33

Key A
12

Read/Write

SFA = 3

Track Stable Frontier

SFA = 3
SFB = 3
SFC = 5

SF = ?SF = 3
SF Map

3

Advance to
stable frontier

[AX]0à2 [AY]3

Mia

34

Key A

13

JackSFA = 3
SFB = 3
SFC = 5

SF Map

Read-Only Transaction Logic

Key B

Read
A = ?

VS = 3

Read B = ?VS = 3

[AX]0 [AY]3 [AZ]7

[BX]0 [BY]1 [BZ]3

SF = 3

35

Key A

13

JackSFA = 3
SFB = 3
SFC = 5

SF Map

Read-Only Transaction Logic

Key B

Read
A = ?

VS = 3

Read B = ?VS = 3

[AX]0 [AY]3 [AZ]7

[BX]0 [BY]1 [BZ]3

SF = 3

36

Key A

13

Jack

SF Map

Read-Only Transaction Logic

Key A

[AX]0 [AY]3 [AZ]7

[BX]0 [BY]1 [BZ]3

A = AY
, SFA

= 7

B = B
Z , SFB = 3

SFB = 3
SFC = 5

SFA = 3SFA = 7
SF = 3

• Reading at the stable frontier ensures
reads are non-blocking (N)

• Client pre-determined snapshot with VS
ensures one-round communication (O)

• One VS per read request ensure
constant metadata (C)

37

PORT Is NOC

PORT Systems
• Scylla-PORT
– Base system: ScyllaDB (non-transactional)

• Highly optimized à sensitive to overhead
– NOC + Process-ordered serializability
– Supports simple writes (not write transactions)

• Eiger-PORT
– Base system: Eiger (N, O, C)

• Existing read-only and write transactions
– NOC + Causal consistency
– Supports write transactions

38

Evaluation of Scylla-PORT
• To understand
– Overhead in latency and throughput compared to

simple reads
– Performance advantages compared to other

protocols, e.g., OCC.

• Experiment configuration
– YCSB benchmark with customized parameters for

skew and read-to-write ratios
– Evaluated latency, throughput, scalability, freshness

39

40

Latency-Throughput
Uniform, 5% Writes

0.5

1.5

2.5

3.5

4.5

5.5

0 50 100 150 200 250

Av
er
ag
e
La
te
nc
y
(m
s)

Throughput (K Txn/s)

Scylla-PORT
Scylla-OCC

ScyllaDB
Higher
Throughput

Lower
Latency

41

0
0.5
1

1.5
2

2.5
3

3.5

0 50 100 150 200

Av
er
ag
e
La
te
nc
y
(m
s)

Throughput (K Txn/s)

Scylla-OCC
Scylla-PORT

ScyllaDB

8%

Latency-Throughput
Zipf = 0.99, 5% Writes

Conclusion
• Performance-optimal read-only transactions: NOC

• The NOCS Theorem for read-only transactions
– Impossible to have all of the NOCS properties

• The design of PORT
– NOC with the strongest consistency to date

• Scylla-PORT
– Minimum performance overhead compared to simple reads
– Significantly outperforms the standard OCC

42

1

Contact Information
Haonan Lu

haonanl@cs.princeton.edu

