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Distributed Storage Systems
Enable Today’s Web Services
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Distributed Storage Systems
Reads Dominate Workloads
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Distributed Storage Systems
Simple Reads Are Insufficient
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Read-Only Transactions
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• A group of simple reads sent in parallel

• Do not write data
– Writes are allowed in the system

• Coordinate a consistent view across shards

Coordination overhead causes 
higher latency and lower throughput
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Read-only transaction
performance as close

as possible to simple reads

Goal:
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Read-only transaction
performance as close

as possible to simple reads

Goal:

We answer:
• What does optimal performance mean for read-only transactions?

• When is optimal performance achievable? 

• How can we design performance-optimal read-only transactions? 



Performance Factors
Engineering vs. Algorithmic
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Engineering
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• Equally impact simple reads 
and read-only transactions

• Abstract engineering factors 
by comparing to simple reads
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• Focus on the algorithmic 
properties due to coordination
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Non-Blocking Reads
• Do not wait on external events
– Distributed locks, timeouts, messages, etc.

• Lower latency
– Avoid any time spent blocking

• Higher throughput
– Avoid CPU cost of context switches
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One-Round Communication
• One-round on-path reads
– Succeed in one round, i.e., no retries

• No off-path messages
– Required by reads but off the critical path

• Lower latency
– Avoids time for extra on-path messages

• Higher throughput
– Avoids CPU cost of processing extra messages
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Constant Metadata
• Metadata
– Information used to find a consistent view
– Timestamps, transaction IDs, etc.

• Size of metadata remains constant 
regardless of contention

• Higher throughput
– Avoids CPU cost of processing extra data
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Performance-optimal read-only 
transactions are NOC:

Non-blocking messages
that complete in 
One-round with 
Constant metadata



Strict Serializability
• The strongest consistency model
–Writing applications made easy

• Requires a total order + real-time order
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The NOCS Theorem: 
Impossible for read-only 

transaction algorithms to achieve 
performance-optimality [N,O,C] 

and strict serializability [S]



Proof Intuition of NOCS
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NOC Designs
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• A type of logical clock
– Specialized for distributed storage systems

• Treat reads and writes differently
– Enable optimizations for reads and writes

• Capture the stable frontier
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Key A

Write in PORT

[AX]0 [AY]2
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Key A

Read in Port
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Read A = ?
VS = 2

No tick 
on reads

A = AY
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Key A
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Key A
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Read A = ?
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• Reading at the stable frontier ensures 
reads are non-blocking (N)

• Client pre-determined snapshot with VS 
ensures one-round communication (O)

• One VS per read request ensure 
constant metadata (C)
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PORT Is NOC



PORT Systems
• Scylla-PORT
– Base system: ScyllaDB (non-transactional)

• Highly optimized à sensitive to overhead
– NOC + Process-ordered serializability
– Supports simple writes (not write transactions)

• Eiger-PORT
– Base system: Eiger (N, O, C)

• Existing read-only and write transactions
– NOC + Causal consistency
– Supports write transactions
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Evaluation of Scylla-PORT
• To understand
– Overhead in latency and throughput compared to 

simple reads
– Performance advantages compared to other 

protocols, e.g., OCC.

• Experiment configuration
– YCSB benchmark with customized parameters for 

skew and read-to-write ratios
– Evaluated latency, throughput, scalability, freshness
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Conclusion
• Performance-optimal read-only transactions: NOC

• The NOCS Theorem for read-only transactions
– Impossible to have all of the NOCS properties

• The design of PORT
– NOC with the strongest consistency to date

• Scylla-PORT
– Minimum performance overhead compared to simple reads
– Significantly outperforms the standard OCC
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