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Background: Storage Trend

HDD SATA SSD NVME SSD All SSD Array

Bandwidth ~80MB/s ~500MB/s ~6GB/s ~48GB/s
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Modern storage delivers higher bandwidth and concurrency.
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Background: Write Dependency 
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Background: Storage Order

Application Block Layer

OS level
scheduling

Device 
Driver

Hardware 
retries

Storage 
Device

Device side
scheduling

Deadline, 
BFQ, etc.

Modern IO stack is Orderless.
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Background: Storage Order 
To enforce storage order, current IO stack should 
process only one set of orderless IOs at a time.

Serialization Concurrency
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Motivation

Orderless writes-> Full bandwidth!

Ordered writes  -> Hard to grow!

1 Device 2 Devices 3 Devices

Test tool: fio

IO size: 4 KB

Threads: up to 4

Test SSD: Intel 750
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2. Design

Can we and how to achieve storage 
order with full bandwidth? 

with Horae.
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Horae IO stack Overview 
Key idea: Split the IO stack into an ordered control path 
and an orderless data path

File System

Device Driver

Storage 
Arrays

Block Layer

Linux IO Stack

2

3

HoraeFS

Ordering Layer

HoraeStore

Horae IO Stack

Device Driver

Block Layer

Storage Arrays

1

2

3

Full bandwidth Storage order
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Horae’s Key Design

HoraeFS

Ordering Layer

HoraeStore

Horae IO Stack

Device Driver

Block Layer

Storage Arrays
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3
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Key idea:

Dedicated Control Path

Opportunities:

• Parallelizing durability commands

• Parallelizing in-place updates

Use cases:

• File System: HoraeFS

• Object Store: HoraeStore
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Dedicated Control Path

Data Buffer

chip chip chip chip

SSD

CMB

23

CPUDMA engine

CMB (persistent Controller 
Memory Buffer) In NVMe
spec.

Circular 
Ordering 
Queue

16–Byte Ordering Metadata, 
persist latency ~0.5us

lba len devID etag ordering

dr durability

plba in-place update
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Dedicated Control Path

Use the ordering metadata to provide ordering 
guarantee during normal execution and crash recovery.

(a) Normal execution

Data Buffer

chip chip chip chip

A1
B2

C3

Ordering Layer

Ordering
Satisfied
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Dedicated Control Path
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Dedicated Control Path

Use the ordering metadata to provide ordering 
guarantee during normal execution and crash recovery.

(a) Normal execution (b) Crash recovery
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Dedicated Control Path

Use the ordering metadata to provide ordering 
guarantee during normal execution and crash recovery.

(a) Normal execution (b) Crash recovery
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Dedicated Control Path

Use the ordering metadata to provide ordering 
guarantee during normal execution and crash recovery.

(a) Normal execution (b) Crash recovery
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Classic Durability Guarantee

• Linux uses FLUSH command to synchronously and 
serially drain out the possibly volatile data buffer in 
each device.

Data Buffer

chip chip chip chip

Device A

A1 Data Buffer

chip chip chip chip

Device B

B2
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Horae’s Durability Guarantee

• Horae introduces joint FLUSH to perform parallel 
FLUSHes in separate devices.
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Horae’s Durability Guarantee

• Horae introduces joint FLUSH to perform parallel 
FLUSHes in separate devices.
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Data Buffer

chip chip chip chip

Linux IPU

Parallelizing In-Place Updates
• Classic IO stacks serialize in-place updates.

a.txt
(V=1)

a.txt
(V=2)
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Data Buffer

chip chip chip chip

Horae IPU

Data Buffer

chip chip chip chip

Linux IPU

Parallelizing In-Place Updates
• Classic IO stacks serialize in-place updates.

a.txt
(V=1)

a.txt
(V=2)

• Horae parallelizes in-place updates through write 
redirection using the plba field of ordering metadata.
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Data Buffer
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Use Case 1: HoraeFS

fsync

App:

Journal:

ext4

Latency Reduction!

fbarrier: ordering 

App:

Ordering:

Durability:

HoraeFS

CPU IO Context Switch Ordering Layer

30

separate ordering logic from durability logic

fsync



Use Case 2: HoraeStore

CPU IO Ordering Layer

TXN1:

TXN2:

Ceph BlueStore

TXN1:

TXN2:

HoraeStore
31

parallelize dependent transactions

Concurrently 
processed!

Serially 
processed.



3. Evaluation

[1] Barrier-Enabled IO stack for Flash Storage, FAST’18

Test layer

Block Device
File System

Storage

Application

• FIO random overwrite

Benchmarks

• FIO allocating write

• OLTP-insert, dbbench, objectbench

• Lower-end SATA SSD A: Samsung 860 Pro

• Medium-end NVMe SSD B: Intel 750 (consumer-grade)

• High-end NVMe SSD C: Intel DC P3700 (datacenter-grade)

Hardware

• Linux VS. Barrier[1] VS. Horae

Compared systems
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Block Device Performance
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• Single Device • Multiple Devices

Maximum Device Bandwidth

2x

4.1x 6.8x
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Separating the ordering control path is efficient.



File System Performance
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• 1 NVMe SSD (B) • 2 NVMe SSDs (B+C)

Parallelizing the data and journal processing is efficient.
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• Sole • Separate redo log

• Horae boosts MySQL performance by up to 1.8x
• HoraeFS-RAID0 < HoraeFS



Application Performance-HoraeStore
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• apply_transaction • queue_transaction

HoraeStore outperforms BlueStore by up to 2x.



Conclusion
• The write dependency overhead becomes more severe with 

the scaling of storage concurrency.

• We re-architect IO stack with HORAE, providing a dedicated 
control path to reduce the write dependency overhead.

• Horae boosts file system level and application level 
performance by up to 2.2x and 2x.

Thank You!

liao-xj17@mails.tsinghua.edu.cn
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