
Write Dependency Disentanglement
with HORAE

Xiaojian Liao, Youyou Lu, Erci Xu, Jiwu Shu

1

Tsinghua University

1. Background and Motivation

2

Background: Storage Trend

HDD SATA SSD NVME SSD All SSD Array

Bandwidth ~80MB/s ~500MB/s ~6GB/s ~48GB/s

Single-Head
Concurrency

(1)

Multi-Channel
Concurrency

(>=32)

Multi-Device
Concurrency
(> =256)

Modern storage delivers higher bandwidth and concurrency.

core core core core

flash flash flash flash

NVMe Controller

core

flash flash

SATA Ctrl

Multi-Channel
Concurrency

(1~8)

3

Background: Write Dependency

4

A1 B2 C3

Write Dependency

“Persist-before”

Storage

System
A1 B2 C3

Storage order

Consistency

File System
Journaling

COW-based
File System Soft Updates ……

require

maintain
Storage Device

Background: Storage Order

Application Block Layer

OS level
scheduling

Device
Driver

Hardware
retries

Storage
Device

Device side
scheduling

Deadline,
BFQ, etc.

Modern IO stack is Orderless.

5

A3 A2 A1 A3 A1 A2 A1 A2 A3

Background: Storage Order
To enforce storage order, current IO stack should
process only one set of orderless IOs at a time.

Serialization Concurrency
6

Application Block Layer

OS level
scheduling

Device
Driver

Hardware
retries

Storage
Device

Device side
scheduling

Deadline,
BFQ, etc.

A2 A1A3

Background: Storage Order
To enforce storage order, current IO stack should
process only one set of orderless IOs at a time.

Serialization Concurrency
7

Application Block Layer

OS level
scheduling

Device
Driver

Hardware
retries

Storage
Device

Device side
scheduling

Deadline,
BFQ, etc.

A2
A1

A3

Background: Storage Order
To enforce storage order, current IO stack should
process only one set of orderless IOs at a time.

Serialization Concurrency
8

Application Block Layer

OS level
scheduling

Device
Driver

Hardware
retries

Storage
Device

Device side
scheduling

Deadline,
BFQ, etc.

A2 A1
A3

Background: Storage Order
To enforce storage order, current IO stack should
process only one set of orderless IOs at a time.

Serialization Concurrency
9

Application Block Layer

OS level
scheduling

Device
Driver

Hardware
retries

Storage
Device

Device side
scheduling

Deadline,
BFQ, etc.

A2 A1A3

Motivation

Orderless writes-> Full bandwidth!

Ordered writes -> Hard to grow!

1 Device 2 Devices 3 Devices

Test tool: fio

IO size: 4 KB

Threads: up to 4

Test SSD: Intel 750

10

0

200

400

600

800

1 8 24 32 39 55 63 70 86

K
I
O

PS

of hardware queues

Ordered

Orderless 8X

2. Design

Can we and how to achieve storage
order with full bandwidth?

with Horae.

11

Yes,

Horae IO stack Overview
Key idea: Split the IO stack into an ordered control path
and an orderless data path

File System

Device Driver

Storage
Arrays

Block Layer

Linux IO Stack

2

3

HoraeFS

Ordering Layer

HoraeStore

Horae IO Stack

Device Driver

Block Layer

Storage Arrays

1

2

3

Full bandwidth Storage order

12

Horae’s Key Design

HoraeFS

Ordering Layer

HoraeStore

Horae IO Stack

Device Driver

Block Layer

Storage Arrays

1

2

3

2

13

Key idea:

Dedicated Control Path

Opportunities:

• Parallelizing durability commands

• Parallelizing in-place updates

Use cases:

• File System: HoraeFS

• Object Store: HoraeStore

3

2 3

1

Dedicated Control Path

Data Buffer

chip chip chip chip

SSD

CMB

23

CPUDMA engine

CMB (persistent Controller
Memory Buffer) In NVMe
spec.

Circular
Ordering
Queue

16–Byte Ordering Metadata,
persist latency ~0.5us

lba len devID etag ordering

dr durability

plba in-place update

2

3

2 3

A1

14

Dedicated Control Path

Use the ordering metadata to provide ordering
guarantee during normal execution and crash recovery.

(a) Normal execution

Data Buffer

chip chip chip chip

A1
B2

C3

Ordering Layer

Ordering
Satisfied

15

A1 B2 C3

Dedicated Control Path

Use the ordering metadata to provide ordering
guarantee during normal execution and crash recovery.

(a) Normal execution

Data Buffer

chip chip chip chip

A1
B2

C3

Ordering Layer

A1 B2 C3

Ordering
Satisfied

16

Dedicated Control Path

Use the ordering metadata to provide ordering
guarantee during normal execution and crash recovery.

(a) Normal execution (b) Crash recovery

Data Buffer

chip chip chip chip

A1
B2

C3

Ordering Layer

A1 B2 C3

Ordering
Satisfied

Data Buffer

chip chip chip chip

A1
B2

C3

Ordering Layer

A1

B2

C3

Ordering
Satisfied

17

Dedicated Control Path

Use the ordering metadata to provide ordering
guarantee during normal execution and crash recovery.

(a) Normal execution (b) Crash recovery

Data Buffer

chip chip chip chip

A1
B2

C3

Ordering Layer

A1 B2 C3

Ordering
Satisfied

Data Buffer

chip chip chip chip

A1
B2

C3

Ordering Layer

A1

B2

Ordering
Satisfied

Discard C3
during
recovery

18

Dedicated Control Path

Use the ordering metadata to provide ordering
guarantee during normal execution and crash recovery.

(a) Normal execution (b) Crash recovery

Data Buffer

chip chip chip chip

A1
B2

C3

Ordering Layer

A1 B2 C3

Ordering
Satisfied

Data Buffer

chip chip chip chip

A1
B2

C3

Ordering Layer

A1

B2

Ordering
Satisfied

Discard C3
during
recovery

19

Proof In the Paper

Classic Durability Guarantee

• Linux uses FLUSH command to synchronously and
serially drain out the possibly volatile data buffer in
each device.

Data Buffer

chip chip chip chip

Device A

A1 Data Buffer

chip chip chip chip

Device B

B2

20

Classic Durability Guarantee

• Linux uses FLUSH command to synchronously and
serially drain out the possibly volatile data buffer in
each device.

Data Buffer

chip chip chip chip

Device A

A1

Data Buffer

chip chip chip chip

Device B

B2

21

Classic Durability Guarantee

• Linux uses FLUSH command to synchronously and
serially drain out the possibly volatile data buffer in
each device.

Data Buffer

chip chip chip chip

Device A

A1

Data Buffer

chip chip chip chip

Device B

B2

22

Horae’s Durability Guarantee

• Horae introduces joint FLUSH to perform parallel
FLUSHes in separate devices.

Data Buffer

chip chip chip chip

Device A

A1 Data Buffer

chip chip chip chip

Device B

B2

A1
B2

23

Horae’s Durability Guarantee

• Horae introduces joint FLUSH to perform parallel
FLUSHes in separate devices.

Data Buffer

chip chip chip chip

Device A

A1

Data Buffer

chip chip chip chip

Device B

B2

A1
B2

24

Data Buffer

chip chip chip chip

Linux IPU

Parallelizing In-Place Updates
• Classic IO stacks serialize in-place updates.

a.txt
(V=1)

a.txt
(V=2)

25

Data Buffer

chip chip chip chip

Linux IPU

Parallelizing In-Place Updates
• Classic IO stacks serialize in-place updates.

a.txt
(V=1)

a.txt
(V=2)

26

Data Buffer

chip chip chip chip

Linux IPU

Parallelizing In-Place Updates
• Classic IO stacks serialize in-place updates.

a.txt
(V=1)

a.txt
(V=2)

27

Data Buffer

chip chip chip chip

Horae IPU

Data Buffer

chip chip chip chip

Linux IPU

Parallelizing In-Place Updates
• Classic IO stacks serialize in-place updates.

a.txt
(V=1)

a.txt
(V=2)

• Horae parallelizes in-place updates through write
redirection using the plba field of ordering metadata.

a.txt
(V=1)

a.txt
(V=2)

V=1

V=2

28

Data Buffer

chip chip chip chip

Horae IPU

Data Buffer

chip chip chip chip

Linux IPU

Parallelizing In-Place Updates
• Classic IO stacks serialize in-place updates.

a.txt
(V=1)

a.txt
(V=2)

• Horae parallelizes in-place updates through write
redirection using the plba field of ordering metadata.

a.txt
(V=1)

a.txt
(V=2)

V=1

V=2

29

Use Case 1: HoraeFS

fsync

App:

Journal:

ext4

Latency Reduction!

fbarrier: ordering

App:

Ordering:

Durability:

HoraeFS

CPU IO Context Switch Ordering Layer

30

separate ordering logic from durability logic

fsync

Use Case 2: HoraeStore

CPU IO Ordering Layer

TXN1:

TXN2:

Ceph BlueStore

TXN1:

TXN2:

HoraeStore
31

parallelize dependent transactions

Concurrently
processed!

Serially
processed.

3. Evaluation

[1] Barrier-Enabled IO stack for Flash Storage, FAST’18

Test layer

Block Device
File System

Storage

Application

• FIO random overwrite

Benchmarks

• FIO allocating write

• OLTP-insert, dbbench, objectbench

• Lower-end SATA SSD A: Samsung 860 Pro

• Medium-end NVMe SSD B: Intel 750 (consumer-grade)

• High-end NVMe SSD C: Intel DC P3700 (datacenter-grade)

Hardware

• Linux VS. Barrier[1] VS. Horae

Compared systems

32

Block Device Performance

0

1000

2000

3000

4000

4 8 16 32 64

T
h
ro

ug
h
pu

t
(M

B
/s

)

Write Size (KB)

3 NVMe SSDs (2B + C)

Linux Horae

0

500

1000

1500

2000

4 8 16 32 64

T
h
ro

ug
h
pu

t
(M

B
/s

)

Write Size (KB)

1 NVMe SSD C

Linux Barrier-enabled Horae

• Single Device • Multiple Devices

Maximum Device Bandwidth

2x

4.1x 6.8x

33
Separating the ordering control path is efficient.

File System Performance

0

50

100

1 4 12

K
I
O

PS

0

50

100

1 4 12

K
I
O

PS

Threads
ext4 BarrierFS HoraeFS

Durability

Ordering

0

50

100

150

1 4 12

K
I
O

PS

Durability

0

50

100

150

1 4 12

K
I
O

PS

Threads
ext4 HoraeFS

Ordering

1.5x

1.6x

2.2x

34

• 1 NVMe SSD (B) • 2 NVMe SSDs (B+C)

Parallelizing the data and journal processing is efficient.

0

20

40

60

80

100

fsync fbarrier

K
T

X
/s

ext4-RAID0 ext4

HoraeFS-RAID0 HoraeFS

Application Performance-MySQL

0

10

20

30

40

50

fsync fbarrier

K
T

X
/s

ext4 BarrierFS HoraeFS

1.8x

1.4x1.6x

ext4 fbarrier: nobarrier option, weaker ordering

35

• Sole • Separate redo log

• Horae boosts MySQL performance by up to 1.8x
• HoraeFS-RAID0 < HoraeFS

Application Performance-HoraeStore

0

1

2

3

4

5

1 2 4 6 8 10 12

T
PS

(K
)

of sequencers

BlueStore-S BlueStore-M

HoraeStore-S HoraeStore-M

0

5

10

15

1 2 4 6 8 10 12

T
PS

(K
)

of sequencers

BlueStore-S BlueStore-M

HoraeStore-S HoraeStore-M

Sole: SSD A; Multiple: SSD A+B+C

1.4x
2x

36

• apply_transaction • queue_transaction

HoraeStore outperforms BlueStore by up to 2x.

Conclusion
• The write dependency overhead becomes more severe with

the scaling of storage concurrency.

• We re-architect IO stack with HORAE, providing a dedicated
control path to reduce the write dependency overhead.

• Horae boosts file system level and application level
performance by up to 2.2x and 2x.

Thank You!

liao-xj17@mails.tsinghua.edu.cn

Write Dependency Disentanglement with HORAE

Xiaojian Liao, Youyou Lu, Erci Xu, Jiwu Shu

37

