Google

Thunderbolt:
Throughput-Optimized, QoS-Aware Power Capping at Scale

G
Shaohong Li*, Xi Wang, Xiao Zhang, Vasileios Kontorinis, Sreekumar Kodakara, David Lo, Parthasarathy Ranganathan

* Presenter



Motivation: power oversubscription and capping

$200+B worldwide spend on data centers

Power oversubscription:
more capacity without construction

e Data center aggregated power usage is rarely close
to the theoretical max

e  But protective systems are needed to avoid overload
due to rare power spikes

Power capping:
protective system that shaves power spikes

e  Throttles running tasks without violating their SLOs



Motivation: task QoS differentiation

Throughput-oriented tasks Latency-sensitive tasks Tasks of different QoS are co-located

e  Completes on the order of e Responds to requests on the e  (Googles cluster scheduler
hours or more order of milliseconds to seconds does not assign priority or

e  Examples: web indexing, log e Examples: web front-end, search QoS to machines. They are
processing service assigned to tasks

e  Amenable to performance e Not amenable to performance e Improves machine utilization
throttling (runs slower) throttling (becomes

e Notamenable to disruption unresponsive) Goal: Task QoS-aware capping that gently

throttles throughput-oriented tasks and
exempts latency-sensitive tasks

(wastes work)

Node
Google’s cluster scheduler I
(task-level QoS)
Node
I

Requires task level control

3 Google



Prior industry solutions did not meet our needs

Either task QoS-aware but has ...0r has gentle throttling but

disruptive capping action... coarser-grained QoS differentiation

Example: Examples:
Capping system for medium Dynamo [2], CapMaestro [3]
voltage power plane [1]

Appropriate for clusters with Appropriate for clusters with

low-priority tasks that can coarser-grained QoS

tolerate disruption differentiation, such as machine
level

[1] Sakalkar et al. Datacenter power oversubscription with a medium voltage power plane and priority-aware capping. ASPLOS 2020.
[2] Wu et al. Dynamo: Facebook’s data center-wide power management system. ISCA 2016.
[3] Li et al. A scalable priority-aware approach to managing datacenter server power. HPCA 2079. Google

4



Thunderbolt’'s contributions

Simultaneously achieves the following:

O1 02 03

Power safety with Task-level QoS Hardware platform
minimized performance  differentiation independence
degradation . . .

Flexible to apply different Applicable to all platforms
Efficient use of power throttling levels to tasks of all vendors. Accelerates
budget while being with different SLO, even on new platform introduction.

responsive and effective to the same machine.
reduce power.

Deployed at scale in Google data centers over years
Enables oversubscription in logs processing clusters from 0 to 9--25%

04

Tolerance of power
telemetry unavailability

Failover subsystem that
can safely operate without
power telemetry.




Architecture & Implementation




Architecture

“Reactive capping” primary subsystem
Operates when power signals are available.

1. Meter watcher reads power from meters

2. Power notifier determines whether and how to throttle
based on the “load shaping” policy

3. Machine manager sends throttling (load shaping) RPCs
to node controllers

4. Node controller throttles tasks using “CPU bandwidth
control”

“Proactive capping” failover subsystem
Operates when power signals are unavailable.

1.  Risk assessor reads power history data and assesses
risk of power overload

2. Ifrisk is high, machine manager sends throttling ("“CPU
jailing”) RPCs to node controllers

3. Node controller throttles tasks using CPU jailing

power
history

power

history data

Powe

power

S——
power topology
data

o ower 1op

risk . Thunderbolt service
L
assessor & s,
réad; es%,
ul”gs @/71(
power throttling
q meter readings po\‘N_er decision machine
watcher notifier manager
. " ]
oSy
throttlin.g/éPCs
_~ 1.4
node node node
controller controller T controller




Architecture

“Reactive capping” primary subsystem

Operates when power signals are available.

1. Meter watcher reads power from meters
— A
2. Power notifier determines whether and how to throttle Thunderbolt service
based on the “load shaping’ policy 4

Powerr adings

3. Machine manager sends throttling (load shaping) RPCs

power power throttling
to node controllers [meters ] ceadinas L{\ meter | |reacings, | - power |decision | machine
. “ . watcher notifier manager
4. Node controller throttles tasks using “CPU bandwidth BB g
control” e /é
throttling/RPCs
. ,
data node node I node I
controller controller o controller




Architecture

power

power history . N Thunderbolt service

/S‘.
history data assessor s‘*‘es
s
’b@%

throttling
pO\‘N.er decision machine
notifier manager

e |

wer topowg Y
pOWTOPNOQY v throttlin.g/éPCs
“Proactive capping” failover subsystem dere e node. I node I
controller controller T controller

Operates when power signals are unavailable.

1. Risk assessor reads power history data and assesses
risk of power overload

2. Ifrisk is high, machine manager sends throttling (“CPU
jailing”) RPCs to node controllers

3. Node controller throttles tasks using CPU jailing



Mechanism and policy details

Reactive capping

Node mechanism: Control policy:

CPU bandwidth control Load shaping

Proactive capping

Node mechanism: Control policy:

CPU jailing Risk assessment

10

Google



11

Mechanism and policy details

Reactive capping

Node mechanism: Control policy:

CPU bandwidth control Load shaping

Proactive capping

Node mechanism: Control policy:

CPU jailing Risk assessment

Google



Reactive capping mechanism:
CPU bandwidth control

Example machine (period = 100 ms)

cgroup 1
(quota = 70 ms)

task 1
Linux kernel feature

e Platform independent

cgroup 2
(quota = 90 ms)

Task-level CPU cap

e Ataskis assigned to a control group

cgrou
If the machine has 2 logical CPUs, (A %Pup) : ianed h
then its CPU utilization is capped at ° cap Is assigned to eac
(70 +90) / (100 * 2) = 80% cgroup by setting its quota

12 Google



Why not RAPL or DVFS?

RAPL DVFS
e  Per-socket control. Cannot achieve task-level e  Supported by most modern platforms.
control without additional scheduling constraint. e  Per-core control not supported by Intel
e Intel specific. Not desirable for our clusters with pre-Haswell and some non-x86 platforms.
diverse platforms. e Narrower power control dynamic range than
e Precise power control and wide control dynamic bandwidth control.
range. e  Higher throughput than bandwidth control

under the same power budget.

CPU bandwidth control's native task-level control and platform independence is vital for scalability
(DVFS may be added for future efficiency optimization where per-core control is supported)

13



CPU bandwidth control, DVFS, RAPL
on Intel Skylake CPU

14

1.0 1.0 1.0
g
Zo08 0.8 0.8
(=%
z 0.6 0.6 0.6
Q
©
Soa 0.4 0.4
=
g 0.2 0.2 0.2
= (a) bandwidth control (b) DVFS (c) RAPL
0.0 0.0 0.0
0.0 05 1.0 00 0.5 10 00 05 1.0

normalized CPU usage  normalized frequency limit normalized power limit

CPU power and set point

e Workload: power virus
e Power dynamic range: RAPL > BW control > DVFS

¥
=]

—e— Bandwidth Control
----- DVFS

e o o
5 o

normalized throughput
ot
N

o
o

0.0 0.2 0.4 0.6 0.8 1.0
normalized CPU power

CPU power and throughput

e  Workload: video transcoding
e Power dynamic range: BW control > DVFS
e  Efficiency: DVFS > BW control



Mechanism and policy details

Reactive capping

Node mechanism: Control policy:

CPU bandwidth control Load shaping

Proactive capping

Node mechanism: Control policy:

CPU jailing Risk assessment

15

Google



Reactive capping policy: load shaping

Randomized unthrottling, multiplicative decrease

e  Machines unthrottled randomly when throttling ends
e Task CPU cap decreases multiplicatively when
throttling is active

Two thresholds with two multipliers
e Balances safety and efficiency
QoS differentiation: exempting latency tasks

e  Continuous monitoring ensures safe power with
exempt tasks

16

power
A

power limit

hard throttling region
high threshold

/
/  'soft throttling

>

—— power trace

= s region /
Ao viiniaia — < —4+-+- low threshold
| &
low thres. low thres.
activated expires
—i—\ time
quota (ms) | - 2 -

usage (ms) | 200 | 2 100

hard multiplier = 0.01, soft multiplier = 0.8

Google



Load shaping on a production cluster

Production cluster

e Tens of thousands of machines
e Diverse workloads, both throughput-oriented and 0.750 3oy 0750

(al) power with mult. = 0.5 (b1) power with mult. = 0.95
latency-sensitive 50725 0.725
,_‘_‘._30‘700 m 0.700 { | T AN WA
Power utilization pattern 5 0675 0675
éo.eso 0.650
o Sawtooth-like pattern 0.625 i 0.625
00:00 00:30 01:00 01:30 00:00 00:30 01:00 01:30

e Power reduced in 2s
e  Smaller multiplier = oscillation with greater magnitude

17



Load shaping on a production cluster

Failure of affected tasks

Load shaping does not notably increase failures

99%-ile read latency of exempt storage service

18

Load shaping does not notably increase latency

| Duration | Failure fraction | Latency |

Baseline
0.95 soft mult.
0.75 soft mult.
0.5 soft mult.

25 min.
5 min.
10 min.
5 min.

0.00002
0.00000
0.00003
0.00007

79 ms
79 ms
80 ms
78 ms




19

Mechanism and policy details

Reactive capping

Node mechanism: Control policy:

CPU bandwidth control Load shaping

Proactive capping

Node mechanism: Control policy:

CPU jailing Risk assessment

Google



Proactive capping mechanism: CPU jailing

Deterministic machine CPU cap

Deterministic cap is important for power safety

A fraction, J, of logical CPUs on each machine are
made unavailable to tasks

Each machine’s CPU utilization is capped at (1 - J)
J can be determined by translating power budget to
CPU budget using a model of power-CPU relation

Relaxed QoS differentiation

20

Jailed CPUs are inaccessible to all tasks

Required for strong power guarantee

Higher priority tasks have more access to remaining
CPUs

CPU mask of tasks with 20% CPU jailing (J = 0.2)

logical
CPU

logical
CPU

logical = logical | logical
CPU CPU CPU

logical = logical | logical
CPU CPU CPU

green = accessible; gray = jailed

Google



20% CPU jailing on a production cluster

Production cluster

e Tens of thousands of machines
e Diverse workloads, both throughput-oriented and
latency-sensitive

Task failures
e 20% jailing does not notably affect failures

99%-ile read latency of storage service

e 20%jailing does not notably affect latency

21

| Duration | Failure fraction | Latency |

Baseline
CPU jailing

60 min.
55 min.

0.00003
0.00002

79 ms
86 ms




Mechanism and policy details

Reactive capping

Node mechanism: Control policy:

CPU bandwidth control Load shaping

Proactive capping

Node mechanism: Control policy:

CPU jailing Risk assessment

22

Google



Proactive capping policy: risk assessment

Power of
recent past

Duration of
meter
unavailability

23

Assesses risk of

reaching power limit

— Jail

Risk high?

Risk low?

— Not jail

Risk assessment using a
probabilistic model

Conservative model that has
low false negative rate

Details out of scope for
confidentiality; any conservative
model that assesses risk and
makes a binary decision can be
used

Google



24

Deployment at Scale in Google



Deployed in logs processing clusters

O ~

Workloads in logs Enabled 9%-25% Throttling has triggered
processing clusters are oversubscription 5times in 5 clusters
mostly throughput-oriented in 130 days with negligible
but there are also critical performance impact

latency-sensitive ones

25



Summary

G Power oversubscription
with power capping

e Thunderbolt power capping
system

Deployment at scale in
e Google logs processing

clusters over years

26

Effective for reducing data center costs
Throttling needs to be compatible with SLOs

Power safety with minimized performance degradation
Task-level QoS differentiation

Hardware platform independence

Tolerance of power telemetry unavailability

9%—-25% oversubscription achieved
Triggered in production with negligible performance degradation

Google



Thank you



