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Heterogeneity
All nodes are different

Different characteristics: # cores, total 
memory …

Different hardware type / vendors

Different workload patterns

Different health history
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Measuring Customer Experience

• We need to monitor VM availability: 
down time / up time

• But each VM interruption causes 
significant impact to customer
• Disrupt user experience (ie gaming)
• Applications take time to recover
• Customer frustration would come in 

case of repeated reboots
• Two short interruptions are more 

impactful than one longer one
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Impact of Node Failure
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VM
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FW/HW failure

• Node-level failure ➔ bad impact for every VM it contains

• We need to predict failures and take the appropriate mitigation actions
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Traditional Operation Workflow

Offline & repair node
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Attempt 1: Mitigation Before Diagnostics

Offline & repair node
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Attempt 2: Prediction of Node Failure

Offline & repair node
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Attempt 3: Prediction + Static Mitigation

Offline & repair node
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Mitigation 
Tradeoff

❖ Can a mitigation be effective for 
all kind of scenarios?

❖ How to confirm a mitigation is 
effective?

❖ Even if a mitigation is effective, 
can we do better? Can it change in 
time?
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Mitigation Tradeoff: No One-Size-Fits-All 

How to mitigate predicted node failures: reasonable proposal

Capacity impactVM pause impact VM interruption 
impact

Block 
allocation

Live-migrate 
eligible VMs

Wait for 7 
days

Force 
remaining VMs 

migration 

Diagnosis + 
Repair

If failure is not imminent, do we 
need to completely block 

allocation?

How long should we wait for 
customers to intentionally move 

their VMs?

If node has still not failed after 7 
days, could it now be healthy?
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How To Estimate Mitigation Efficacy?

• Heterogeneity: Multiple factors will impact the mitigation Efficacy
• Live migration success rate depends on available capacity, hardware health, 

workload on the node

• Allocation relies on a complex optimization logic and on stochastic customer 
demand

• Prediction false positives are unavoidable and can depend on unobservable 
signals
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Key Insights

“In a heterogeneous and ever-changing cloud system, the effectiveness 
of a mitigation action is often probabilistic.”

“To select the (near-)optimal mitigation, each possible action needs to 
be compared at-scale with production workload.”
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Solution

Continuous probabilistic online minimization
of customer impact

Different mitigation actions 
depending on the type of 
predicted failure

Online testing of 
the different 
options

Adapt to ever-
changing cloud 
behavior

Account for node 
heterogeneity of 
Azure’s fleet

Focus on 
impacting 
failures
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Narya’s Overview

Prediction Rule

ML failure prediction 
Customer impact

Feedback loop

Diagnostics

Offline Monitoring

…

CostLabels

Prediction Decision Mitigation Impact Assessment
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Main Challenges

Define Define customer impact as a generic metric

Test Safely test action in production 

Balance
Balance exploring actions and exploiting the best 
so far

Adapt Adapt our decision to system changes

Fast Fast and scalable mitigation decision
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Measuring Interruptions

• Interruption Types: 

• VM reboot, IO pause, VM temporarily freeze / blackout

• Service Availability 

• Time duration based

• Short VM downtime DOES NOT imply short customer 
service downtime. 

• Each VM service downtime requires customer service 
to rehydrate their state

• Interruption Count

• Event count based 

• Each VM interrupt impacts customer service once

• More realistically reflects the customer pain
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Defining Customer Impact

• VM interruptions are the main negative impact to customer

• We define Annual interruption rate (AIR)

𝐴𝐼𝑅 =
# 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑇

𝑇𝑜𝑡𝑎𝑙 𝑢𝑝 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑇
× 365 𝑑𝑎𝑦𝑠 × 100

Cost = # VM interruptions per node

When scoping it to a contribution per node and removing the constants, we get:
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Narya’s Prediction

Expert Rules ML Prediction
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Motivation To Use ML Prediction

• Expert rule 
• Setting a threshold on a single predictive signal. Ex: Disk low spare space 

• Limitations of expert rule
• High variance of prediction horizon - actual failure time also depends on factors 

• Difficult precision-recall tradeoff – strict rules result in low recall, loose rules yield low 
precision

• What if we look at all signals before the actual failure and use those signals to 
predict the failure?
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ML Model Highlights 

• Comprehensive list of signals that 
cover OS layer, driver layer and 
device layer observation.

• Predict server level failures that has 
customer impact

• Non-handcrafted features
• Spatial attention

• Temporal convolution
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Diversity of Mitigation Actions

Allocation change VM migration Node reboot

Allow allocation

Avoid allocation*

Block allocation

Live migrate VMs*
(unallocatable node only)

Service heal VMs
(unallocatable node only)

Soft kernel reboot*
(unallocatable node only)

Hard reboot

Offline + repair
(empty node only)

*

No Impact

Pause Impact

Soft capacity impact

Hard capacity impact

VM reboot impact

Non-deterministic action
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Narya’s Mitigation Actions

• Use composite actions (sequence of actions)
• Avoid illogical scenarios: migration without blocking allocation, repeated 

reboots …

• Add safety constraint to minimize the cost of exploration

• Easy override priority if several rules overlap

• Simpler learning
If OS crashes

If empty

Example:

Composite actions’ duration is typically in the order of days 23



Narya’s
Decision 
Engine

• Mapping each predicted bad nodes to the 
best composite mitigation action to 
minimize customer pain

• Two algorithms:
• AB testing: 

explore all different possibilities, observe the 
customer pain metric(s) then use the best action 
if it exists

• Multi-Armed Bandit (Thompson Sampling): 
learn the right tradeoff between exploring new 
actions and exploiting the estimated best one 
based on a single customer pain metric
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AB Testing

1. Sample action with preconfigured probabilities 

2. Observe customer impact within an observation window

3. Hypothesis test between cost of all actions

4. If statistical significance, use the optimal action

Action A

Compare 
statistical impact

Action B
25



Adapting AB Testing To Our Scenario

• Cost attribution: VM reboots during the observation window
• knowing which interruptions is caused by the action is not possible

• Stickiness: same node always use the same action
• otherwise we would violate the iid assumption

• Decision vs action: we observe the consequence of every decision
• even if it is skipped, delayed or overridden
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Bandit Motivation

• AB testing limitations

• Does not leverage early observation before statistical 
significance

• Cannot adapt to change after statistical significance

• Multi-armed bandit: dynamically learn the probability 
based on observations

✓Leverage early observation in exploration 

✓ Adapt to change in exploitation 
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Bandit Framework

Reward = - Customer impact (Cost) 

Machines = Available composite actions

Pull / Game = New node mitigation request

Each prediction rule is a different bandit experiment
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Bandit Adaptation To Our Scenario

Accommodate temporal 
change: exponential 
decay

Delayed rewards

Bandit stickiness Safeguards
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Ensuring Safe Exploration

• Only allow relevant composite actions

• Override logic if other more severe issues are 
detected

• Fallback to AB testing if there are not enough 
observation data

• Enforce minimum and maximum probability for 
each action
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Overall Savings: 26%

• Compare the use of AB testing/Bandit to previous static strategy

• Estimated AIR savings: 
[Observed AIR] – [Control group AIR mapped to whole fleet]
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Prediction Performance

• Precision – 79.5%

• Recall – 50.7%

• ML prediction:
Time to failure – 48 hours on 
average
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Compare AB Testing and Bandits

• Counterfactual estimation
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Case Study: I/O Timeouts

• A/B testing then Bandit experiment on 
I/O timeouts prediction rule

• Unexpected system changes switched 
probability from using NoOp to using 
UA-LM-RH automatically

• Although change is not understood, 
bandit can automatically adjust
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Operation Learnings

• Many factors influence efficiency: need for probabilistic approaches

• Decisions may go wrong: closely monitor all components behavior and use 
interpretable models

• Data quality is critical: watch for telemetry schema changes

• Customer impact is complex: human in the loop helps prevent from new types of 
impact
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Summary / Takeaway Message

• Both failure prediction and proactive mitigation is critical

• No one-size-fits-all mitigation strategy, adapting different mitigation strategies in 
an online fashion

• Narya uses AB testing and multi-armed bandit to proactively and adaptively 
mitigate of predicted bad nodes

• Narya achieved 26% improvement over previous static strategy
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