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Background: 
NVM Express (NVMe) Storage

• Provide high I/O performance through PCIe 

− Utilize multiple I/O submission/completion queue (SQ/CQ) pairs

− Enable highly parallel I/O processing on multiple CPU cores
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NVMe storage is widely used in modern datacenters to accelerate I/O 

NVMe storage
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Background: 
HW-assisted NVMe Virtualization

• Utilize single-root I/O virtualization (SR-IOV)

− Create multiple physical/virtual functions (PFs/VFs) internally

− Assign each VF to a VM exclusively and allow direct access to HW

− Assignable resources: virtual queues (VQs), virtual interrupts (VIs)
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SR-IOV can provide near-native storage performance to multiple VMs 
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Background:
Limitations of SR-IOV
• Limited VM-management 

features and use cases

- No interposition layer bewteen 
VMs and storage

- Inflexible storage resource 
allocation

• Limited compatibility

− Vendor-specific and hard-wired 
implementations
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SR-IOV loses flexibility to implement critical VM-management features
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Outline

• Background

• Motivation

− SW-based host sidecore / on-device sidecore approaches

• FVM: FPGA-assisted Storage Virtualization

• Evaluation

• Conclusion
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Alternative #1:
SW-based Host Sidecore Approach

• Dedicate CPU cores to emulate virtual devices

• Accelerate storage virtualization layers

- Avoid expensive traps to a hypervisor and cache pollution
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Host sidecore approaches accelerate virtualization by dedicating CPU cores
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Limitations of Host Sidecores

• Expensive and non-scalable virtualization

- Polling guest I/O activities + indirect interrupt injection

- Demand 40%-60% more CPU resources than native I/O operations

- Limited VM performance or scalability due to lack of CPU resources
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VM applications Sidecores

x86 x86 x86 x86 x86 x86 x86 x86 x86

Host sidecore approaches should pay the expensive virtualization tax

SSD SSD

7/32

Applications



Alternative #2:
On-device Sidecore Approach

• Offload a virtualization layer to SoC cores

− Emulate guest I/O via SoC cores in other peripheral devices

• Save the host resources required for storage virtualization
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On-device sidecores can reduce the virtualization tax
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Limitations of On-device Sidecore

• Weak computing power of SoC cores 

− Cannot support a large number of VMs, virtual/physical devices

SoC SoC SoC SQ CQ

VM NVMe SSD

SoC SoC SoC SQ CQ

VM NVMe SSD

Single VM, single SSD Large # of VMs & SSDs

On-device sidecores suffer from limited performance and scalability
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Design Goals

SR-IOV
CPU FVM
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SoC
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Sidecore

Compatibility5
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Outline

• Background

• Motivation

• FVM: FPGA-assisted Storage Virtualization

• Evaluation

• Conclusion
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Key Ideas and Benefits
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• FPGA-assisted 
virtualization

− HW-based

− Host-decoupled

− Scalable

− Flexible

− Programmable

FVM enables fast, scalable, and flexible storage virtualization
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Key Idea #1: 
HW-level Virtualization Layer

• Utilize a decoupled FPGA for device emulation

• Allow direct access to FVM engine from a VM environment

− Save the host resource and enable fast virtualized I/O paths

FVM engine

I/O emulation⋯
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FVM emulates virtual storage devices without software arbitration

SSD SSD SSD SSD SSD SSD SSD SSDSSD SSD
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Key Idea #2:
Scalable Virtualization Layer

• Create many front-end / back-end resources

− Front-end: FVM core – Poll and emulate guest I/O operations

− Back-end: NVMe interface – Manage and control SSDs through PCIe

− Can scale with a large number of VMs and SSDs
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FVM can scale up the virtualization resources with a target storage system 

Many VMs Many SSDs
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Key Idea #3: 
Direct Device-Control Mechanism

• Implement NVMe interfaces on FVM engine

• Issue and handle NVMe commands / completions

− Interact with NVMe storage devices at the hardware level
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FVM manages physical NVMe devices through PCIe P2P
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Key Idea #4:
HLS-based Design Flow

• Support C/C++ high-level languages 

• Allow users to extend virtualization features easily

• Exmaple features

− Consolidation

− Caching

− Replication

− Throttling

− Direct (D2D) copy

Category Feature SR-IOV FVM    (LoC)

Storage 
configuration

Consolidation (40)

Caching (220)

Resource
management

Replication (15)

Throttling (70)

Administration Direct copy (570)

FVM supports easy VM management and feature programmability
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Outline

• Background

• Motivation

• FVM: FPGA-assisted Storage Virtualization

− Key ideas / end-to-end I/O paths

• Evaluation

• Conclusion
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End-to-End Submission Path (1/2)
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End-to-End Submission Path (2/2)
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End-to-End Completion Path (1/2)
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End-to-End Completion Path (2/2)
VM

NVMe 
device driver

NVMe
SQ/CQ

FVM engine 
driver

FVM engine

DMA
buffer

FVM coresNVMe DB

NVMe
interface

SQ CQ SSD

①

②

⑤-1

SR-IOV

Crossbar
④

③

DB write

Data

Completions

Completions 
/ interrupts

⑤
-2

21/32

⑨

⑦

⑧

⑥



VM-management Feature: Throttling
VM
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...
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...
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VM-management Feature: D2D copy
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Implementation

• Prototype

− 2x 12-core Xeon 5118 / 256GB

− 5x 480GB NVMe SSDs

− Xilinx Alveo U280 Card

• Based on open-source SW 
frameworks

− Linux kernel v5.3

− KVM/QEMU v3.0 

− SPDK vhost-nvme v20.01

2x Intel
Xeon Gold 5118

1x Xilinx
Alveo U280

5x Intel Optane 900p
480GB SSDs
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Outline

• Background

• Motivation

• FVM: FPGA-assisted Storage Virtualization

• Evaluation

• Conclusion
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Evaluation Methodology

• FVM vs host sidecore, passthrough (ideal perf.)

• Random I/O performance from VMs

− FIO random-read/write/rw (4 threads, 32 queue depth)

− I/O throughput, host CPU usage measurement

• RocksDB performance with multiple threads from VMs

− (A) 50% read, (B) 95% read, (C) read-only, (D) read-latest, (E) 
short-range, (F) read-modifiy-write workloads

− RocksDB operation throughput measurement

• Scability test with multiple VMs and SSDs
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Random I/O Performance

• Random I/O with limited CPU usage (4 cores) 

− Host sidecore: incur CPU contention between VMs and sidecores

− Passthrough/FVM: decouple virtualization from host resources
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FVM achieves 1.37x – 1.42x higher I/O throughput than sidecore approaches
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RocksDB Operation Throughput

• RocksDB workloads with 4-8 CPU cores 

− Host sidecore: limit VM performance due to lack of host resources

− FVM: save host resources and offer more compute power to VMs
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~ 70% improvement

FVM achieves higher I/O throughput by offering more CPUs to VMsWith FVM, host CPUs are better spent for VM workloads and user applications 
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Scalability Test

• An increasing # of VMs (1 SSD/4 cores/VM) 

− Host sidecore: pay the virtualization tax with an increasing # of VMs

− FVM: scale up the virtualization resources with a target # of VMs/SSDs
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Example Feature: D2D Copy

• Direct device-to-device copy through P2P

− Vs. SW-based indirect data copy

− Host resource saving: CPU, host memory / root complex BW
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Discussion & Conclusion

• Cost analysis

− CPU saving: 20 cores in a 64-core machine ≈ $2000 - $6400

− Small FPGA resource usage for FVM engine

• FVM: FPGA-assisted storage virtualization

− HW-based and scalable virtualization layer

− Direct device-control mechanism

− HLS-based design flow

• Implementation with off-the-shelf FPGA/SSD devices

− 1.37x – 1.42x higher I/O performance than sidecore approaches

− 9.5 GB/s aggregate throughput with 4 NVMe SSDs
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Thank You!

FVM: FPGA-assisted Virtual Device Emulation for Fast, Scalable, and 
Flexible Storage Virtualization

Dongup Kwon, dongup@snu.ac.kr
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