4B
4
N
Y
S

LLL((
EX
B3
(s

\ 855
&.. . “)‘V
(e
R,
A

HPCS

High Performance Compuler System Lab

FVM: FPGA-assisted Virtual Device Emulation
for Fast, Scalable, and Flexible Storage Virtualization

Dongup Kwon'?, Junehyuk Boo!, Dongryeong Kim!, and Jangwoo Kim?1:2

1 Department of Electrical and Computer Engineering, Seoul National University
2 Memory Solutions Lab, Samsung Semiconductor Inc.

(s B

NLE
=

Y,

Y
S
=\ '\\9
L

s

S

Hpcs

High Performance Computer System La

L
S

Y

"

Background:
NVM Express (NVMe) Storage

e Provide high I/0 performance through PCle
— Utilize multiple I/O submission/completion queue (SQ/CQ) pairs
- Enable highly parallel I/O processing on multiple CPU cores

4)

| Host memory
o Jt _ Core 1 Core 2 Core n
| |Admin queue|| 1/0 queue || I/0 queue I/0 queue
Qe o= | TN AR AN AN AN AR | AR AR
§olle== ‘\I\f' ‘\f\" ‘\f\f' ‘\»\»’
o —— | Y = i Y = i S = 7 Y ~
e 1 NL ANy NL ANy .
_____a_h NVMe storage J

NVMe storage is widely used in modern datacenters to accelerate 1I/0

2/32

@ HPCS

(YOI, Cormy

Background:
HW-assisted NVMe Virtualization

o Utilize single-root I/0 virtualization (SR-IOV)
- Create multiple physical/virtual functions (PFs/VFs) internally
- Assign each VF to a VM exclusively and allow direct access to HW
- Assignable resources: virtual queues (VQs), virtual interrupts (VIs)

Host software VM O VM 1 VM n
\ /. \
g @ QPNVMe storageQP {} A
' PF 1 { VF O VF 1 | | VF n |
Management VQ VI VQ VI .| VQ VI
Namespace Namespace Namespace Namespace
R) L) {))

SR-IOV can provide near-native storage performance to multiple VMs

3/32

««9
P e
H
’0

<Y

Y

v

N E
O

S HPCS

i Performance Computer System Lab

Background:
Limitations of SR-IOV

e Limited VM-management
features and use cases

_ o Category Feature SR-IOV

- No interposition layer bewteen —
VMs and storage Consolidation ‘/
_ Storage 2 ¢ x

- Inflexible storage resource configuration ggregation
allocation Caching X

e Limited compatibility Resource Replication

- Vendor-specific and hard-wired management Throttling

implementations Migration x

Administration
Metering

SR-IOV loses flexibility to implement critical VM-management features

4/32

Outline

e Motivation
- SW-based host sidecore / on-device sidecore approaches

5/32

t*"
-

& HPCS
Alternative #1: =

SW-based Host Sidecore Approach

e Dedicate CPU cores to emulate virtual devices
o Accelerate storage virtualization layers

- Avoid expensive traps to a hypervisor and cache pollution
(-) g
VM Linux block I/O Sidecores g
NVMe device driver
(N I/O emulation
Shared NVMe SQ/CQ /
mem User-level NVMe driver
NVMe DB [|[DMA buffer
 Host software) \@@@@ @@,

Host sidecore approaches accelerate virtualization by dedicating CPU cores

6/32

Limitations of Host Sidecores

o Expensive and non-scalable virtualization
- Polling guest I/O activities + indirect interrupt injection
- Demand 40%-60% more CPU resources than native I/O operations

- Limited VM performance or scalability due to lack of CPU resources
Native I/O Virtualized I/0

o 3 ®

- ﬁ'i ﬁ'i - - -ﬁ'i
Applications _VM applications Ji| Sidecores |

Host sidecore approaches should pay the expensive virtualization tax

8 HPCS

Y [¥

- %@;&Eg'&% High Performance Computer System Lab

Alternative #2:
|

On-device Sidecore Approach

o Offload a virtualization layer to SoC cores
- Emulate guest I/O via SoC cores in other peripheral devices

e Save the host resources required for storage virtualization

~ N s N

VM Linux block I/O PCle Sl‘t I TS
=t =1z]z 08

NVMe device driver TFAE N X\ %

- P S L L

: T6\7£9\\

NVMe SQ/CQ [l w({ R””tl'/”;e W ‘@' N-:/

N——V 1A\
. NVMe DB |[DMA buffer/ l emulation \@l\@l

On-device sidecores can reduce the virtualization tax

8/32

Limitations of On-device Sidecore

e Weak computing power of SoC cores
- Cannot support a large number of VMs, virtual/physical devices

Single VM, single SSD Large # of VMs & SSDs
((
VM || NVMessD | | M]JJ [NVMe SSD]JJ.
% S 4 %

(N (N
SmartNIC SmartNIC

\/
P NN

On-device sidecores suffer from limited performance and scalability

9/32

Design Goals

Sidecore
CPU SoC FVM

v Vv

SR-IOV

n Performance

n Host efficiency

IEl scalability
¥ Flexibility

B Compatibility

X < <«
WX A
NSNS

X
v
v

10/32

Outline

e FVM: FPGA-assisted Storage Virtualization

11/32

Key Ideas and Benefits

/

VM

~

NVMe][FVM engine

device driver driver

-

\

Host software

High-level

_synthesis (HLS) |

-

Shared NVMe SQ/CQ

N

Hugepages

JUEL DMA buffer gPA > hPA table
\< A ~
 FVM engine (FPGA board)
SR-IOV NVMe DB
I/O emulation gPA 2> hPA

TN AN AN AN RN AR
NNV NIRNYIET\NT\\ VM
EHD| managemen

FVM enables fast, scalable, and flexible storage virtualization

DUETND

[

sy

R o

\‘Iil" TAS K

TN High Perfe nce Computer System Lab

Performa, La) wier

FPGA-assisted
virtualization

- HW-based

- Host-decoupled
— Scalable

- Flexible

- Programmable

12/32

9

S

[SWZZSY
4 . ¥
RN | veTiux (oA
SNl High Perfe Computer System Lab

= ‘ormance Compuler Systerm La

S

Key Idea #1.:
HW-level Virtualization Layer

o Utilize a decoupled FPGA for device emulation

e Allow direct access to FVM engine from a VM environment
- Save the host resource and enable fast virtualized I/O paths

Host software VMO VM 1 VM n
. VAN VAN 4 p N
<L <. FVM engine ji N/
PF VF O

VF 1 VF n
I/0 emulation| | = u(/o emulation

D —

Management I/O emulation

DUETND

[

R o

\‘Iil" TAS '%

TN High Perfe nce Computer System Lab

Performa, La) wier

Key Idea #2:
Scalable Virtualization Layer

e Create many front-end / back-end resources
- Front-end: FVM core - Poll and emulate guest I/O operations
- Back-end: NVMe interface — Manage and control SSDs through PCle
- Can scale with a large number of VMs and SSDs

o ™
/FVM engine b
Many VMs ._Front-end resources, _Back-end resources Many SSDs

——| {3}l

(N O NN
> i > U<
[VM |j7 [N
o =

N
Crossbar
/\L

& HPCS

rformance Computer System Lab

Key Idea #3:
Direct Device-Control Mechanism

e Implement NVMe interfaces on FVM engine
e Issue and handle NVMe commands / completions

- Interact with NVMe storage devices at the hardware level
‘) s N N ™
Host DRAM : PCle NVMe
A 4 FVM engine P2P (storage
-N-'SQ -HCQ, 4 A : ™
X | (DMAwrite [@ __XSQ DB)
Q
2ok PCIe switch || o 9 & X6 s DMA read)
storage , _ = ¢ >
FVM engine| || Ex'—@ @< x DMA write)
{@(@ |l (_DMA write [@/\ XCcQDB)

FVM manages physical NVMe devices through PCle P2P 15,32

F’
(2l
L o5

««
L'T(E l,
P

e

BHPCS
Key Idea #4:

HLS-based Design Flow
e Support C/C++ high-level languages
e Allow users to extend virtualization features easily

e Exmaple features

_ Consolidation Category Feature SR-IOV FVM (LoC)
_ Caching Storage Consolidation \/ \/ (40)
- Replication configuration caching X v (220
~Th rottling Resource Replication \/ (15)
_Direct (D2D) copy management Throttling v (70)

Administration Direct copy x \/ (570)

FVM supports easy VM management and feature programmability 16,32

Outline

e FVM: FPGA-assisted Storage Virtualization
/ end-to-end I/O paths

17/32

End-to-End Submission Path (1/2)

(VM
NVMe ® FVM engine NVMe DMA
device driver] driver SQ/CQ buffer
. — 2 Z X ’
‘FVM engine)/ SR-IOV h
DB write
[/
[[
((U
NVMe DB FVM cores @ Data
Polling <GL, NVMe cmds
Crossbar

- @
(
NVMe \ 5
mterface

JJ NVMe cmds) 18,32

End-to-End Submission Path (2/2)

(VM

[NVMe J@J% FVM engine [NVMe][DMA]

device driver] driver SQ/CQ buffer

4L N
‘FVM eng me)/ SR IOV A
[DB write
C ~ i
NVMe DB[® » FVM cores <ﬂ @ Data
Polling JGL NVMe cmds
Crossbar

- @
(
NVMe \ 5
mterface

JJ NVMe cmds) 19/32

End-to-End Completion Path (1/2)

(VM] _ @
NVMe ©®] FVM engine NVMe DMA
device driver[® drlver A SQ/CQ buffer
AN /7 \ \ z/\x J
/FVM eng m% SR IOV |
DB write ®
[f ﬂ/
NVMe DB " | FVM cores [&1 @ Data
/@\ Completions
—4 p
((®
e Gelee) = —ysso|
g Interface\> ¢/ \& X Comp/etionsj) 20/32

End-to-End Completion Path (2/2)

(VM] _ @
NVMe ® | FVM engine NVMe DMA
device driver[® drlver A SQ/CQ buffer
AN 7/ \ \ z/\x J
/FVM eng m% SR IOV |
DB write ®
[f ﬂ/
NVMe DB " | FVM cores [&1 @ Data
/@x Completions
—4 p
((®
e Eeea) = —sso|
g interface\»+</\& X Comp/etionsj) 21,32

& HPCS

,-\ XL High Performance Computer System Lab

VM-management Feature: Throttling

J

[

[

[

NVMe DB

b

(VM
NVMe FVM engine NVMe DMA
device driver driver SQ/CQ buffer
‘FVM engine SR-IOV)

[

[

FVM cores

Crossbar

Token bucket

1

Token generator

[

NVMe \[
mterface "

if refill token then

submit cmd (cmd)
token bucket -=

token bucket += token

if size < token bucket then

AN

size

22/32

& HPCS

,-\ XL High Performance Computer System Lab

VM-management Feature: D2D copy
~m \

NVMe FVM engine
device driver driver

NVMe DMA
SQ/CQ buffer

J

‘FVM engine SR-IOV)

[[
f f
[[
NVMe DB JJJ FVM cores o/ N[= 1de]y i
4

Crossbar ' \
NVMe X\/7-

[mterfaceu‘U SSD

cmd = generate cmd(src, dst)

buf = alloc buffer ()

cmd list = split cmd(cmd,
buf.size , buf.addr)

23/32

Implementation

g LT R R0 g g
| 5x Intel Optane 900p
480GB SSDs

e Prototype
- 2X 12-core Xeon 5118 / 256GB
- 5x 480GB NVMe SSDs
- Xilinx Alveo U280 Card

3 | + Based on open-source SW
‘ frameworks

- Linux kernel v5.3

- KVM/QEMU v3.0

- SPDK vhost-nvme v20.01

g
f
|

= llmH\il[l\lll\“‘iﬂ’iﬁ\\\\!lllhlll\lﬂlﬂlﬂlﬂ“ﬂﬂll [

24/32

Outline

Background

Motivation

FVM: FPGA-assisted Storage Virtualization
Evaluation

Conclusion

25/32

Evaluation Methodology

e FVM vs host sidecore, passthrough (ideal perf.)

e Random I/0 performance from VMs
- FIO random-read/write/rw (4 threads, 32 queue depth)
- I/O throughput, host CPU usage measurement

e RocksDB performance with multiple threads from VMs

- (A) 50% read, (B) 95% read, (C) read-only, (D) read-latest, (E)
short-range, (F) read-modifiy-write workloads

- RocksDB operation throughput measurement
o Scability test with multiple VMs and SSDs

26/32

Random I/0 Performance

e Random I/0 with limited CPU usage (4 cores)
- Host sidecore: incur CPU contention between VMs and sidecores
- Passthrough/FVM: decouple virtualization from host resources

O Native O Sidecore O Passthrough @BFVM
2.7GB/s 2.8GB/s 2.7GB/s

N O
ol O
|

Throughput
(normalized)
cooo -
Ul
o

© N
o U

Rand-read Rand-write Rand-rw

FVM achieves 1.37x — 1.42x higher I/0O throughput than sidecore approaches

27/32

RocksDB Operation Throughput

e RocksDB workloads with 4-8 CPU cores
- Host sidecore: limit VM performance due to lack of host resources
- FVM: save host resources and offer more compute power to VMs

Q:'-? 2.0 - A OB EC mD mE mF ~ 70% improvement
o) e _ m
B o o
il
(%3 0.0
> 1/4 2/4 1/8 2/8 3/8 4/8
(25%) (50%) ! (12.5%) (25%) (37.5%) (50%)

of sidecores / # of total allocated cores (sidecore util.)

With FVM, host CPUs are better spent for VM workloads and user applications 28/32

Ny 4
i
(2l
Y

E
55
e

HPCS

it Performance Computer S)

Scalability Test

e An increasing # of VMs (1 SSD/4 cores/VM)
- Host sidecore: pay the virtualization tax with an increasing # of VMs
- FVM: scale up the virtualization resources with a target # of VMs/SSDs

o ONative 0O Sidecore O Passthrough BFVM
£%10 - 9.5GB/s
©) B
= 00
E2] 1 I
=
< 9 11
1 2 3 4

Number of VMs & SSDs

FVM provides scalable performance by adding more FVM cores or FPGAs 29/32

Example Feature: D2D Copy

e Direct device-to-device copy through P2P
-Vs. SW-based indirect data copy
- Host resource saving: CPU, host memory / root complex BW

= 1- > 1600 - > 2500 -
279 0.8 - ~ 1200 - m ~2000 -
o O 0 ~ 1200 ~
@ = 0.6 - >0 Y1500 -
] = - 04
JE04- ° g 500 v = 1000 -
a5 0.2 - o~ 400 1 5~ 500 -
O ¢ 8.17
! 0 e Z 0 I l | Q. 0 —— .
<Q
< <
s & L & L &
) < K 3 S <
‘\b o) o)
9 2N o

Discussion & Conclusion

e Cost analysis
- CPU saving: 20 cores in a 64-core machine = $2000 - $6400
- Small FPGA resource usage for FVM engine

e FVM: FPGA-assisted storage virtualization
- HW-based and scalable virtualization layer
- Direct device-control mechanism
- HLS-based design flow

e Implementation with off-the-shelf FPGA/SSD devices

-1.37x - 1.42x higher I/O performance than sidecore approaches
- 9.5 GB/s aggregate throughput with 4 NVMe SSDs
31/32

ey,

& HPCS

SNlLEN High Performance Computer System Lab

Thank You!

1 i »
(VM Host software)
B N W NVMe FVM engine |||[High-level |
— :/__'Jj/— - e device driver driver _synthesis (HLS) |
e ¢ Y . \
/‘;-r/' // S dntel Optanc 900 A5 | | Shared |__NVMe SQ/CQ Hugepages
/1 :f. 2. .
\ ‘/K —_ =,):_:, | mem DMA buffer gPA - hPA table
-'l, = { | /| FVM engine (FPGA board))
A\ FELE - SR-10V NVMe DB
AT Ay I/0 emulation gPA = hPA
' T AT AT AT A
1x Xilinx ‘A (leaW o\ (e ol (el VM
A7 Alveo U280 u @ management
SN 4)) T L i R oy \ /

FVM: FPGA-assisted Virtual Device Emulation for Fast, Scalable, and

Flexible Storage Virtualization

Dongup Kwon, dongup@shnu.ac.kr

32/32

