
FVM: FPGA-assisted Virtual Device Emulation

for Fast, Scalable, and Flexible Storage Virtualization

Dongup Kwon1,2, Junehyuk Boo1, Dongryeong Kim1, and Jangwoo Kim1,2

1 Department of Electrical and Computer Engineering, Seoul National University
2 Memory Solutions Lab, Samsung Semiconductor Inc.

Background:
NVM Express (NVMe) Storage

• Provide high I/O performance through PCIe

− Utilize multiple I/O submission/completion queue (SQ/CQ) pairs

− Enable highly parallel I/O processing on multiple CPU cores

Host memory

⋯

Core 1
I/O queue

SQ CQ

Core 2
I/O queue

SQ CQ

Admin queue

SQ CQ

Core n
I/O queue

SQ CQ

NVMe storage is widely used in modern datacenters to accelerate I/O

NVMe storage

2/32

Background:
HW-assisted NVMe Virtualization

• Utilize single-root I/O virtualization (SR-IOV)

− Create multiple physical/virtual functions (PFs/VFs) internally

− Assign each VF to a VM exclusively and allow direct access to HW

− Assignable resources: virtual queues (VQs), virtual interrupts (VIs)

NVMe storage

Namespace Namespace

VQ VI

Namespace

VQ VI

Namespace

VQ VI⋯

Host software VM 0 VM 1 VM n⋯

PF VF 0 VF 1 VF n

SR-IOV can provide near-native storage performance to multiple VMs
3/32

Management

Background:
Limitations of SR-IOV
• Limited VM-management

features and use cases

- No interposition layer bewteen
VMs and storage

- Inflexible storage resource
allocation

• Limited compatibility

− Vendor-specific and hard-wired
implementations

Category Feature SR-IOV

Storage
configuration

Consolidation

Aggregation

Caching

Resource
management

Replication

Throttling

Administration
Migration

Metering

SR-IOV loses flexibility to implement critical VM-management features
4/32

Outline

• Background

• Motivation

− SW-based host sidecore / on-device sidecore approaches

• FVM: FPGA-assisted Storage Virtualization

• Evaluation

• Conclusion
5/32

Alternative #1:
SW-based Host Sidecore Approach

• Dedicate CPU cores to emulate virtual devices

• Accelerate storage virtualization layers

- Avoid expensive traps to a hypervisor and cache pollution

VM

NVMe device driver

Shared
mem

NVMe SQ/CQ

NVMe DB

Host software

Sidecores
x86 x86 x86

SQ CQ SQ CQ SQ CQ

Linux block I/O

DMA buffer

I/O emulation

User-level NVMe driver

Host sidecore approaches accelerate virtualization by dedicating CPU cores
6/32

Limitations of Host Sidecores

• Expensive and non-scalable virtualization

- Polling guest I/O activities + indirect interrupt injection

- Demand 40%-60% more CPU resources than native I/O operations

- Limited VM performance or scalability due to lack of CPU resources

x86

Native I/O Virtualized I/O

VM applications Sidecores

x86 x86 x86 x86 x86 x86 x86 x86 x86

Host sidecore approaches should pay the expensive virtualization tax

SSD SSD

7/32

Applications

Alternative #2:
On-device Sidecore Approach

• Offload a virtualization layer to SoC cores

− Emulate guest I/O via SoC cores in other peripheral devices

• Save the host resources required for storage virtualization

VM

SoC SoC SoC SQ CQ

SmartNIC

NVMe device driver

Linux block I/O

NVMe SQ/CQ

NVMe DB DMA buffer

PCIe

SQ CQ

SQ CQ

Runtime SW

I/O
emulation

On-device sidecores can reduce the virtualization tax
8/32

Limitations of On-device Sidecore

• Weak computing power of SoC cores

− Cannot support a large number of VMs, virtual/physical devices

SoC SoC SoC SQ CQ

VM NVMe SSD

SoC SoC SoC SQ CQ

VM NVMe SSD

Single VM, single SSD Large # of VMs & SSDs

On-device sidecores suffer from limited performance and scalability
9/32

SmartNICSmartNIC

Design Goals

SR-IOV
CPU FVM

Performance1

SoC

Host efficiency2

Scalability3

Flexibility4

Sidecore

Compatibility5
10/32

Outline

• Background

• Motivation

• FVM: FPGA-assisted Storage Virtualization

• Evaluation

• Conclusion

11/32

Key Ideas and Benefits

VM

NVMe
device driver

Shared
mem

Host software

DMA buffer

NVMe SQ/CQ

FVM engine
driver

Hugepages

gPA → hPA table

High-level
synthesis (HLS)

FVM engine (FPGA board)

SQ CQ SQ CQ SQ CQ

SR-IOV

I/O emulation

VM
management

gPA → hPA

NVMe DB

• FPGA-assisted
virtualization

− HW-based

− Host-decoupled

− Scalable

− Flexible

− Programmable

FVM enables fast, scalable, and flexible storage virtualization
12/32

Key Idea #1:
HW-level Virtualization Layer

• Utilize a decoupled FPGA for device emulation

• Allow direct access to FVM engine from a VM environment

− Save the host resource and enable fast virtualized I/O paths

FVM engine

I/O emulation⋯

Host software VM 0 VM 1 VM n⋯

PF VF 0 VF 1 VF n

I/O emulationI/O emulationManagement

FVM emulates virtual storage devices without software arbitration

SSD SSD SSD SSD SSD SSD SSD SSDSSD SSD

13/32

Key Idea #2:
Scalable Virtualization Layer

• Create many front-end / back-end resources

− Front-end: FVM core – Poll and emulate guest I/O operations

− Back-end: NVMe interface – Manage and control SSDs through PCIe

− Can scale with a large number of VMs and SSDs

FVM engine

S
R
-I

O
V

N
V
M

e
 D

B

FVM
core

NVMe
Intf

C
ro

s
s
b
a
r

SQVM SSD

Front-end resources Back-end resources

FVM can scale up the virtualization resources with a target storage system

Many VMs Many SSDs

14/32

Key Idea #3:
Direct Device-Control Mechanism

• Implement NVMe interfaces on FVM engine

• Issue and handle NVMe commands / completions

− Interact with NVMe storage devices at the hardware level

FVM engine
NVMe

storage

DMA write

DMA write

DMA read

DMA write

SQ DB

CQ DB
N

V
M

e
in

te
rf

a
c
e

PCIe
P2P

①

②

④⑤

⑥

SQ

CQ

NVMe
storage

FVM engine

Host DRAM

SQ CQ

SQ CQ

PCIe switch ③

FVM manages physical NVMe devices through PCIe P2P
15/32

Key Idea #4:
HLS-based Design Flow

• Support C/C++ high-level languages

• Allow users to extend virtualization features easily

• Exmaple features

− Consolidation

− Caching

− Replication

− Throttling

− Direct (D2D) copy

Category Feature SR-IOV FVM (LoC)

Storage
configuration

Consolidation (40)

Caching (220)

Resource
management

Replication (15)

Throttling (70)

Administration Direct copy (570)

FVM supports easy VM management and feature programmability
16/32

Outline

• Background

• Motivation

• FVM: FPGA-assisted Storage Virtualization

− Key ideas / end-to-end I/O paths

• Evaluation

• Conclusion
17/32

End-to-End Submission Path (1/2)
VM

NVMe
device driver

NVMe
SQ/CQ

FVM engine
driver

FVM engine SR-IOV

DMA
buffer

Crossbar

FVM coresNVMe DB

NVMe
interface

SQ CQ SSD

②

③ ④

⑤

⑥

⑦

⑧

Polling NVMe cmds

NVMe cmds

Data

DB write

①

18/32

End-to-End Submission Path (2/2)
VM

NVMe
device driver

NVMe
SQ/CQ

FVM engine
driver

FVM engine SR-IOV

DMA
buffer

Crossbar

FVM coresNVMe DB

NVMe
interface

SQ CQ SSD

②

③ ④

⑤

⑥

⑦

⑧

Polling NVMe cmds

NVMe cmds

Data

DB write

①

19/32

End-to-End Completion Path (1/2)
VM

NVMe
device driver

NVMe
SQ/CQ

FVM engine
driver

FVM engine

DMA
buffer

FVM coresNVMe DB

NVMe
interface

SQ CQ SSD

①

②

SR-IOV

Crossbar
④

③

DB write

Data

Completions

⑨

⑦

⑤-1

⑤
-2

20/32

⑧

Completions
/ interrupts

⑥

End-to-End Completion Path (2/2)
VM

NVMe
device driver

NVMe
SQ/CQ

FVM engine
driver

FVM engine

DMA
buffer

FVM coresNVMe DB

NVMe
interface

SQ CQ SSD

①

②

⑤-1

SR-IOV

Crossbar
④

③

DB write

Data

Completions

Completions
/ interrupts

⑤
-2

21/32

⑨

⑦

⑧

⑥

VM-management Feature: Throttling
VM

NVMe
device driver

NVMe
SQ/CQ

FVM engine
driver

FVM engine

DMA
buffer

NVMe DB

NVMe
interface

SQ CQ SSD

FVM cores Token bucketFVM cores

Token generator
Crossbar

if refill_token then

token_bucket += token

...

if size < token_bucket then

submit_cmd(cmd)

token_bucket -= size

...

22/32

SR-IOV

VM-management Feature: D2D copy
VM

NVMe
device driver

NVMe
SQ/CQ

FVM engine
driver

FVM engine

DMA
buffer

NVMe DB

NVMe
interface

SQ CQ

FVM cores Cmd generator

Intermediate
buffers

...

cmd = generate_cmd(src, dst)

buf = alloc_buffer()

cmd_list = split_cmd(cmd,

sdfsdbuf.size , buf.addr)

…

4KB

SSD

FVM cores

Crossbar

23/32

SR-IOV

Implementation

• Prototype

− 2x 12-core Xeon 5118 / 256GB

− 5x 480GB NVMe SSDs

− Xilinx Alveo U280 Card

• Based on open-source SW
frameworks

− Linux kernel v5.3

− KVM/QEMU v3.0

− SPDK vhost-nvme v20.01

2x Intel
Xeon Gold 5118

1x Xilinx
Alveo U280

5x Intel Optane 900p
480GB SSDs

24/32

Outline

• Background

• Motivation

• FVM: FPGA-assisted Storage Virtualization

• Evaluation

• Conclusion

25/32

Evaluation Methodology

• FVM vs host sidecore, passthrough (ideal perf.)

• Random I/O performance from VMs

− FIO random-read/write/rw (4 threads, 32 queue depth)

− I/O throughput, host CPU usage measurement

• RocksDB performance with multiple threads from VMs

− (A) 50% read, (B) 95% read, (C) read-only, (D) read-latest, (E)
short-range, (F) read-modifiy-write workloads

− RocksDB operation throughput measurement

• Scability test with multiple VMs and SSDs

26/32

Random I/O Performance

• Random I/O with limited CPU usage (4 cores)

− Host sidecore: incur CPU contention between VMs and sidecores

− Passthrough/FVM: decouple virtualization from host resources

0.00

0.25

0.50

0.75

1.00

Rand-read Rand-write Rand-rw

T
h

r
o

u
g

h
p

u
t

(
n

o
r
m

a
li
z
e
d

) Native vhost-nvme Passthrough FVMSidecore

2.7GB/s 2.8GB/s 2.7GB/s

FVM achieves 1.37x – 1.42x higher I/O throughput than sidecore approaches
27/32

RocksDB Operation Throughput

• RocksDB workloads with 4-8 CPU cores

− Host sidecore: limit VM performance due to lack of host resources

− FVM: save host resources and offer more compute power to VMs

0.0

1.0

2.0

1 2 1 2 3 4

CPU cores = 4 # CPU cores = 8

S
p

e
e
d

u
p

(
v
s
 s

id
e
c
o

r
e
)

of CPU cores and vhost sidecores

A B C D E F

of sidecores / # of total allocated cores (sidecore util.)

~ 70% improvement

FVM achieves higher I/O throughput by offering more CPUs to VMsWith FVM, host CPUs are better spent for VM workloads and user applications
28/32

1/4
(25%)

50% 50%25%12.5% 37.5%2/4
(50%)

1/8
(12.5%)

2/8
(25%)

3/8
(37.5%)

4/8
(50%)

Scalability Test

• An increasing # of VMs (1 SSD/4 cores/VM)

− Host sidecore: pay the virtualization tax with an increasing # of VMs

− FVM: scale up the virtualization resources with a target # of VMs/SSDs

0

5

10

1 2 3 4

T
h

r
o

u
g

h
p

u
t

(
G

B
/
s
)

Number of VMs & SSDs

Native vhost-nvme Passthrough FVMSidecore

FVM achieves higher I/O throughput by offering more CPUs to VMsFVM provides scalable performance by adding more FVM cores or FPGAs

9.5GB/s

29/32

Example Feature: D2D Copy

• Direct device-to-device copy through P2P

− Vs. SW-based indirect data copy

− Host resource saving: CPU, host memory / root complex BW

0

0.2

0.4

0.6

0.8

1

C
P

U
 u

s
a
g

e

(
n

o
r
m

a
li
z
e
d

)

0

500

1000

1500

2000

2500

P
C

I
e
 R

C
 B

W

(
M

B
/

s
)

8.17
0

400

800

1200

1600

M
e
m

o
r
y
 B

W

(
M

B
/

s
)

30/32

Discussion & Conclusion

• Cost analysis

− CPU saving: 20 cores in a 64-core machine ≈ $2000 - $6400

− Small FPGA resource usage for FVM engine

• FVM: FPGA-assisted storage virtualization

− HW-based and scalable virtualization layer

− Direct device-control mechanism

− HLS-based design flow

• Implementation with off-the-shelf FPGA/SSD devices

− 1.37x – 1.42x higher I/O performance than sidecore approaches

− 9.5 GB/s aggregate throughput with 4 NVMe SSDs

31/32

Thank You!

FVM: FPGA-assisted Virtual Device Emulation for Fast, Scalable, and
Flexible Storage Virtualization

Dongup Kwon, dongup@snu.ac.kr

32/32

