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Introduction

e  Hybrid computing systems (Amazon F1, Microsoft Catapult, Intel HARP,
Alibaba F3...) 1m0t
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Hybrid computing systems are complex to program

* CPU-FPGA interaction

s+ Difficult to program

s No standard execution environment
» Lack of portability

s+ Lack of proper abstractions

o e |

FPGA layout
PCle, memory, storage, network...
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OS functionality is starting to appear

\/

s Shells for hybrid systems:
. Catapult, HARP, SDAccel, Vitis

% Memory Management:
. CoRAM

\/

** Virtualization and scheduling :
e Vital, Optimus, AmorphOS...

Focus on particular subsets of functionality only!
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A Hypervisor for Shared-Memory FPGA Platforms
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The Feniks FPGA Operating System for Cloud Computing
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Coyote

Hybrid computing system

\/

** Coyote provides a complete minimal core set of essential features above which other
services can be based

Interdependence

Execution
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memory
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Coyote system foundations

** Hardware split into static and dynamic regions
e Dynamic region split into multiple vFPGAs

e VFPGA further split into the User Logic
and the Dynamic Wrapper

*»* Functionality not on the critical path handled
by the host OS

e Kernel driver

e Runtime scheduler
e High level API
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Basic multiplexing abstractions: Processes, threads and tasks

 FPGAs are fundamentally different

— No CPUs or cores Spatial Sharing
— Spatial and temporal sharing S s s coo o
cheduler
User User User
_— Logic Logic Logic
 Coyote:
VvFPGA vFPGA vFPGA
— Combines both approaches = ‘)
— Multitasking abstraction for a set of Temporal | T

Sharing

independent, isolated vFPGAs
— VFPGAs are equivavalent
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Execution environment: Application portability

* Don’t really exist across the FPGA platforms

— Effort by Xilinx with Vitis

— FPGA not only a pure computational device

 Coyote:
— Single User Logic Interface (ULI)

— Interaction with the complete system

— Access is low level
— Portability and extensibility
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Scheduling: Non-preemptive

e Basic mechanisms to capture the state of the

FPGA don’t exist Job
request
queues A ‘S 2 R -oaﬁa--
. " robin
ITErr == ey
* Coyote: SRR e, :[' ----------------- :
. ' gueues min '
— Non-preemptive task based approach 4 ior.~ operid- 1 I Igad :
: prior. = 1, nper:id=2 | :
_ Avoid preemption :‘E?IE?ZE?SEZ:'&Z% T ? ? A
N ,
— User applications can’t always be trusted ENSE| | (S [—

— Preemption requires cooperation

— Preemption would impose additional
application complexity

— Additional problems of capturing the state
of stateful services
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Memory management: Access flexibility

e Virtual memory tends to be ignored in FPGAs

Host Local FPGA
Memory Memory
* Coyote implements a flexible approach giving us Dat;""T A > B‘U‘""Data
multiple ways to access both host and local FPGA B B
Host MMU PCle, ECI, CCIX, CXL... VFPGA MMU
memory " e N
* Unified memory model built on top adds to the 2 S
programmability eel (u::rpfc;ac)
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Services

e Network: TCP/IP and RDMA network stacks!!!

shared between vFPGAs. E E E
o200

 On-board FPGA memory: Hiding the complexity

. | Abstraction | ,

of multiple local memory channels through T T T T |
- - "DRAM | [ DRAM | | ‘ | | I
St”plng abstraction Channel | | Channel : Tf:f RDMA ‘::‘ GPU :: w :
. 1 / 2 AN S y A i \

Memor} “ | Network e :| Accel. :: Storage :

stack !k stack | |\stack jl\Stﬂd( )

* Further services easily possible:
— External storage
— External accelerators (GPUs, ASICs)

[1] StRoM: Smart Remote Memory
David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, Gustavo Alonso
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Evaluation

** Depending on the configuration Coyote shell uses
15-25% of current FPGA resources

+* Compared with commercial systems Coyote
achieves comparable or better performance for a
real-world use case [1]

** Microbenchmarks:
e Sharing of the resources is fair
e Scheduling tactic reduces overall execution time
e Abstraction performance penalties are negligible
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Hybrid computing systems are difficult to program
The need for proper abstractions is evident

To find the right abstractions for FPGAs,
a complete set of functions has to be considered

https://github.com/fogasystems

This work has been made possible through a generous equipment donation from Xilinx
Xilinx Adaptive Compute Cluster (XACC) Program: https://www.xilinx.com/support/university/ XUP-XACC.htmi
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