
Do OS abstractions
make sense in FPGAs?
Dario Korolija
Timothy Roscoe
Gustavo Alonso

Systems Group, Dept. of Computer Science, ETH Zurich

Introduction

• Hybrid computing systems (Amazon F1, Microsoft Catapult, Intel HARP,
Alibaba F3...)

• At ETH we have built one of these:

2

http://enzian.systems

Hybrid computing systems are complex to program

 CPU-FPGA interaction

 Difficult to program

 No standard execution environment

 Lack of portability

 Lack of proper abstractions

3

FPGA layout
PCIe, memory, storage, network…

OS functionality is starting to appear

 Shells for hybrid systems:
• Catapult, HARP, SDAccel, Vitis

 Memory Management:
• CoRAM

 Virtualization and scheduling :
• Vital, Optimus, AmorphOS...

Focus on particular subsets of functionality only!

4

Coyote
Hybrid computing system

 Coyote provides a complete minimal core set of essential features above which other
services can be based

5

Interdependence

Coyote system foundations

6

Hardware split into static and dynamic regions
• Dynamic region split into multiple vFPGAs

• vFPGA further split into the User Logic
and the Dynamic Wrapper

Functionality not on the critical path handled
by the host OS
• Kernel driver
• Runtime scheduler
• High level API

Basic multiplexing abstractions: Processes, threads and tasks

7

• FPGAs are fundamentally different
− No CPUs or cores
− Spatial and temporal sharing

• Coyote:
− Combines both approaches
− Multitasking abstraction for a set of

independent, isolated vFPGAs
− vFPGAs are equivavalent

Execution environment: Application portability

8

• Don’t really exist across the FPGA platforms
− Effort by Xilinx with Vitis
− FPGA not only a pure computational device

• Coyote:
− Single User Logic Interface (ULI)
− Interaction with the complete system
− Access is low level
− Portability and extensibility

Scheduling: Non-preemptive

9

• Basic mechanisms to capture the state of the
FPGA don’t exist

• Coyote:
− Non-preemptive task based approach
− Avoid preemption
− User applications can’t always be trusted
− Preemption requires cooperation
− Preemption would impose additional

application complexity
− Additional problems of capturing the state

of stateful services

Memory management: Access flexibility

10

• Virtual memory tends to be ignored in FPGAs

• Coyote implements a flexible approach giving us
multiple ways to access both host and local FPGA
memory

• Unified memory model built on top adds to the
programmability

Services

11

• Network: TCP/IP and RDMA network stacks[1]
shared between vFPGAs.

• On-board FPGA memory: Hiding the complexity
of multiple local memory channels through
striping abstraction

• Further services easily possible:
− External storage
− External accelerators (GPUs, ASICs)

[1] StRoM: Smart Remote Memory
David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, Gustavo Alonso

Evaluation

12

Depending on the configuration Coyote shell uses
15-25% of current FPGA resources

Compared with commercial systems Coyote
achieves comparable or better performance for a
real-world use case [1]

Microbenchmarks:
• Sharing of the resources is fair
• Scheduling tactic reduces overall execution time
• Abstraction performance penalties are negligible

Decision trees:

Striping:

Hybrid computing systems are difficult to program
The need for proper abstractions is evident

To find the right abstractions for FPGAs,
a complete set of functions has to be considered

This work has been made possible through a generous equipment donation from Xilinx
Xilinx Adaptive Compute Cluster (XACC) Program: https://www.xilinx.com/support/university/XUP-XACC.html

13

https://github.com/fpgasystems

	Do OS abstractions�make sense in FPGAs?
	Introduction
	Hybrid computing systems are complex to program
	OS functionality is starting to appear
	Coyote�Hybrid computing system
	Coyote system foundations
	Basic multiplexing abstractions: Processes, threads and tasks
	Execution environment: Application portability
	Scheduling: Non-preemptive
	Memory management: Access flexibility
	Services
	Evaluation
	Hybrid computing systems are difficult to program�The need for proper abstractions is evident���To find the right abstractions for FPGAs, �a complete set of functions has to be considered����This work has been made possible through a generous equipment donation from Xilinx �Xilinx Adaptive Compute Cluster (XACC) Program: https://www.xilinx.com/support/university/XUP-XACC.html��

