Do OS abstractions
make sense in FPGAs?

Dario Korolija
Timothy Roscoe
Gustavo Alonso

Systems Group, Dept. of Computer Science, ETH Zuric

Ny
D INFK

Systems @ ETH zua

Introduction

e Hybrid computing systems (Amazon F1, Microsoft Catapult, Intel HARP,
Alibaba F3...) 1m0t

2 x ThunderX DDR4 DIMMs

2 x ThunderX
40Gb/s Ethernet

"’ Baseboard
(4

Management
Controller

3 x ThunderX NVMe

Marvell Cavium CPU
ThunderX-1 CN8890-NP

ENZIAN

4 x FPGA QSFP28 4 x ThunderX SATA

(16 x 25Gb/s)

2 x ThunderX DDR4 DIMMs

http://enzian.systems

FPGA PCle 16x
2 x FPGA DDR4 DIMMs

ThunderX PCle 8x
Xilinx XCVU9P FPGA

FPGA FMC
connector

2 x FPGA DDR4 DIMMs

ETHzirich Ja-® DINFK 2

Systems@ ETH zavicn

Hybrid computing systems are complex to program

* CPU-FPGA interaction

s+ Difficult to program

s No standard execution environment
» Lack of portability

s+ Lack of proper abstractions

o e |

FPGA layout
PCle, memory, storage, network...

EtHzirich Bam DINFK 3

Systems@ ETH zavicn

OS functionality is starting to appear

\/

s Shells for hybrid systems:
. Catapult, HARP, SDAccel, Vitis

% Memory Management:
. CoRAM

\/

** Virtualization and scheduling :
e Vital, Optimus, AmorphOS...

Focus on particular subsets of functionality only!

ETHzirich Ja-® DINFK

Systems@ ETH zavicn

A Hypervisor for Shared-Memory FPGA Platforms

Jincheng Ma® Gl Zuo
Abel 1u Encyew! Zhengwe Q1
ity of See

2 Abubo b

Abstract

Loughlin®

Unirersay o
Shongha Joo Towg Universty

hong Ko Lo
Ads

iaohe Cheng! Yangiang Liu’

Baris Kasikei

ol Tectmciosy
belogy

L ——

Clowd provien
aceclestors o]

Pl theie G

e FPOA md
P work brad
€S Comeepis
machines

Sharing,

T

*The University of Texas at Austin and Viw

Abstrs

wad providers sach s As

ware, where res
e dimensions of o
FPGAS provide a multi-dime]
kw33 the FRGA fubric: |
s, memeries, asd 1O can o

al constraints on

%
size of the largext ot plces

cation vize, amd aversized. dof

resoarces snd redoced concurr|
This paper preseats AMORF
ser FPGA logic in marphable
jon and

dicron o domaine
ol soltware processes. Morpble
shesing thesr deployed foem B
b
i
2 with
e
encrati]
of varying size and resouro
nitiplenes Morphlets on the

ments 3nd availabil

provide # puraruetcrieed
AMORPHOS. sl

, and C. ibility for Fabric with
AmorrPHOS

Abmed Khawaja!, Joshua Landgraf', Rohith Prakas
Wei', Eric Schkufza®, C)

ristopher J. Rossbach®

ersity of Texas at Austin 2VMware Research Group

re Research Group

The Feniks FPGA Operating System for Cloud Computing

Siansong Zhang? Yonggiang Xiong! N

Lurhang, yqu singybou,v-ransha,v-bojli penge guoche mosci

ABSTRACT

ngyi Xut Ran Shu®? Bojie Lit
Guo Chen® Thomas Moscibroda®
STC

) @ micrusolt.com

Peng Cheng?

¥ Microsolt Research “Teinghua University

EC2 instances mount iple FPGAS 10 cloud users 12

Driven by explosive
doran of Mocee's i
FPGAS nto datscest

e

loads w0 mare power,

can provide the highe
o

A Cloud-Scale Acceleration Architecture

Andrew Puinam
Stepden Heil
Todkd Massengill
am Lanks Dok Chiou Dug Borper

Adran M. Caulfield Eric 5. Chung
Terrmy A Hlas

‘orocmn

+ imcotpursind i

pesshe 131
e ——— Y

e Conigura
bprecaie in Miroell's prafstion dsiscrate

wan fimmited o 3 singhe rack

e aeclotster. whuch
o bt ufferead e G cobarsing

prisdetion datmeeters acnms
S com
bl cormarin
Bandware. Thin. dataputh can inchade netw,
ape frw, socurity operations, s &

Ly diflermce cver provaoss woek b

Coyote

Hybrid computing system

\/

** Coyote provides a complete minimal core set of essential features above which other
services can be based

Interdependence

Execution

N

(] ()
}

(Ulritve) } [Services]
memory
\J
[Physical J

memory

EtHzirich Bam DINFK 5

Systems@ ETH ziicn

Coyote system foundations

** Hardware split into static and dynamic regions
e Dynamic region split into multiple vFPGAs

e VFPGA further split into the User Logic
and the Dynamic Wrapper

» Functionality not on the critical path handled
by the host OS

e Kernel driver

e Runtime scheduler
e High level API

ETHzirich Ja-® DINFK

Systems@ ETH zavicn

User
Space

Kernel
Space

..........

User Code

User Code User Code

Coyote Library

Coyote Library Cayote Library

Runtime Manager

Static
Region

Dynamic
Region

Network
Stack
- 8 L .' _'. IIIIIIIIIIII
1 1 13
Dynamic Dynamic . .
Wrapper Wrapper
User User Dynamic
Logic Logic Region
vFPGA

Basic multiplexing abstractions: Processes, threads and tasks

 FPGAs are fundamentally different

— No CPUs or cores Spatial Sharing
— Spatial and temporal sharing S s s coo o
cheduler
User User User
_— Logic Logic Logic
 Coyote:
VvFPGA vFPGA vFPGA
— Combines both approaches = ‘)
— Multitasking abstraction for a set of Temporal | T

Sharing

independent, isolated vFPGAs
— VFPGAs are equivavalent

EmHzirich [a-m DINFK :

Execution environment: Application portability

* Don’t really exist across the FPGA platforms

— Effort by Xilinx with Vitis

— FPGA not only a pure computational device

 Coyote:
— Single User Logic Interface (ULI)

— Interaction with the complete system

— Access is low level
— Portability and extensibility

EtHzirich Bam DINFK

Systems@ ETH ziicn

DMA

descriptors
Control

bus

High speed
data bus

N
T ¥

AXI4 Axig Clkrst AXI4 AXi4
Stream . Stream
Full Lite
I =—E1" User logic |
- g -

Qu eues AX14 AXI4 AX14 Qu eues

Stream Stream Stream

IPC b | 4| 4| IPC

Host Network Local FPGA
data data memory data

Scheduling: Non-preemptive

e Basic mechanisms to capture the state of the

FPGA don’t exist Job
request
queues A ‘S 2 R -oaﬁa--
. " robin
ITErr == ey
* Coyote: SRR e, :[' ----------------- :
. ' gueues min '
— Non-preemptive task based approach 4 ior.~ operid- 1 I Igad :
: prior. = 1, nper:id=2 | :
_ Avoid preemption :‘E?IE?ZE?SEZ:'&Z% T ? ? A
N ,
— User applications can’t always be trusted ENSE| | (S [—

— Preemption requires cooperation

— Preemption would impose additional
application complexity

— Additional problems of capturing the state
of stateful services

EtHzirich Bam DINFK 9

Systems@ ETH ziicn

Memory management: Access flexibility

e Virtual memory tends to be ignored in FPGAs

Host Local FPGA
Memory Memory
* Coyote implements a flexible approach giving us Dat;""T A > B‘U‘""Data
multiple ways to access both host and local FPGA B B
Host MMU PCle, ECI, CCIX, CXL... VFPGA MMU
memory " e N
* Unified memory model built on top adds to the 2 S
programmability eel (u::rpfc;ac)

EtHzirich Bam DINFK .

Systems@ ETH ziicn

Services

e Network: TCP/IP and RDMA network stacks!!!

shared between vFPGAs. E E E
o200

 On-board FPGA memory: Hiding the complexity

. | Abstraction | ,

of multiple local memory channels through T T T T |
- - "DRAM | [DRAM | | ‘ | | I
St”plng abstraction Channel | | Channel : Tf:f RDMA ‘::‘ GPU :: w :
. 1 / 2 AN S y A i \

Memor} “ | Network e :| Accel. :: Storage :

stack !k stack | |\stack jl\Stﬂd()

* Further services easily possible:
— External storage
— External accelerators (GPUs, ASICs)

[1] StRoM: Smart Remote Memory
David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, Gustavo Alonso

EtHzirich Bam DINFK .

Systems@ ETH zavicn

Evaluation

** Depending on the configuration Coyote shell uses
15-25% of current FPGA resources

+* Compared with commercial systems Coyote
achieves comparable or better performance for a
real-world use case [1]

** Microbenchmarks:
e Sharing of the resources is fair
e Scheduling tactic reduces overall execution time
e Abstraction performance penalties are negligible

EtHzirich Bam DINFK

Systems@ ETH ziicn

Decision trees:

Million tuples / second

100
ll l-engine I][I 2-engines
80 66 ‘
60 - 48

41
40 33
24
20 - I
0

C

Harp-v2 Amazon-F1 Coyote-vcul 18

Striping:
Throughput (GiB/s)

16 l-é- I-chan ==l 2-chan =fJ= striping
14
12
10
8 —
6 —

4
2

A it abhk SR TEE TFP™

4k 16k 64k 256k

Transfer size (bytes)

12

IM

Y

Hybrid computing systems are difficult to program
The need for proper abstractions is evident

To find the right abstractions for FPGAs,
a complete set of functions has to be considered

https://github.com/fogasystems

This work has been made possible through a generous equipment donation from Xilinx
Xilinx Adaptive Compute Cluster (XACC) Program: https://www.xilinx.com/support/university/ XUP-XACC.htmi

ETHzirich | ™8™ DINFK)

Systems@ ETH zuron

	Do OS abstractions�make sense in FPGAs?
	Introduction
	Hybrid computing systems are complex to program
	OS functionality is starting to appear
	Coyote�Hybrid computing system
	Coyote system foundations
	Basic multiplexing abstractions: Processes, threads and tasks
	Execution environment: Application portability
	Scheduling: Non-preemptive
	Memory management: Access flexibility
	Services
	Evaluation
	Hybrid computing systems are difficult to program�The need for proper abstractions is evident���To find the right abstractions for FPGAs, �a complete set of functions has to be considered����This work has been made possible through a generous equipment donation from Xilinx �Xilinx Adaptive Compute Cluster (XACC) Program: https://www.xilinx.com/support/university/XUP-XACC.html��

