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( Doubling data every 2 years )
30 zettabytes in 2018
175 zettabytes in 2025

3;% data access )
_ will be real-time __ )
L by 2025

data? More flash
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(~ Large-volume data with|
microsecond-level /—
access latencies!

More real-time ‘

storage!

15% annual
growth rate.
47 to 80 billion
( market by 2025!
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Do these SSDs solve ‘
real-time data access challenge?
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“Most of the interesting devices that we are dealing with are

2014 in the microsecond-level, and we suck at microsecond-level”
Destructive latency interruptions inside flash storage devices .
“A new breed of I/O devices motivates greater interest in
2017

microsecond-scale latencies, and new technologies are needed”
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Unpredictable Latency
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U White/gray-box

O Re-architect device internals

&= Powerful
= Need to modify hardware

Popular Solutions On Unpredictability

U Black-box
I. SSD-aware filesystems
and applications

%= No change on hardware

= Considerable re-design
in software stack
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Speculative Execution

7/ I

MongoDB  cassandra

s
e itigate every slow 1/0
’ in a black-box way

U Black-box approaches
I.  SSD-aware filesystems
and applications

/“ Hedged requests (hedging)
7 Straggler!
rop v (| —
2. Speculative @ “ Wait
execution
- N —
T 4% I Faster!

Agnostic!

Speculative execution
- Passively wait due to black-box

rop - [

%) I
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Learning!
LinnOS
- Proactively infer the black-box

Lightweight neural network for
per-1/0 speed inference

LinnOS ,~ a
APP 0I/O attempt A
Fast &

______
0 Slow 1/O! No-Wait}|
— Revoke!

9 I/_O_re-rc_mte - a .
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Contribution

IR

LinnOS Light neural network ) )
Per-1/0 No extra input required
e 87-97% accuracy

vs. state of the art:
hedged requests,
black-box heuristics, etc.

Speed 4-6ps overhead LinnOS:
Prediction Latency stability at

) even p99.99!
w— =
P & P = Average latency
= improved by up to 80%!
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Outline Design Challenges
What to predict?

(accuracy and effectiveness)
OUtPUt e.g., binary classification,

3 Y
|abe|ing multiclass classification,

regression...

Use what to predict?
UChallenges & Solutions (accuracy and inference overhead)

e.g., individual I/O offsets,
. I/O queue lengths,
W Evaluations history latencies. ..

How to minimize the impact?

e.g., false submits,
false revokes

U Conclusion Input Handling
features inaccuracy
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Output labeling

Ideal labels: Only 60-70% accuracy Precise 2 p95 | ‘
- > p95:Tail!

prediction
Exact latency value ‘ is difficule! %,_
e.g. 120ys, 80ys..) s Flexible Mis- %
(e H ) 100-200us sogiceion S p50 | - \® ' Great y
== Difficult to achieve impler and helpfu < 095: Stabl LinnOS accurac
Latency ranges decent accuracy 200-400us w alternatives? P ¢ % b:::ry ’
(e.g., 100-200us, . classification
200-400ps) - p0 -4 ‘
\"\.,\ .3 2
Latencv (ms)
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Input features

Ideal features:
Thousands of features

(addresses in 32-bit binaries)

Unacceptable
Hundreds of
microseconds .

to infer each I/O

High

Addresses of related I/Os ™=
overhead

(finest granularity)

Directly indicate the

resource contention

4 High accuracy
(up to 99%)
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Input features /

Good latency

Using finest features indicator, but how

Low history queue length

is expensive! / about im?”f" + high history latency
/ disruption!? = internal disruptions
: For
each 102 0l 2184
C Last /O ! h  Last I/O latency (s,
Use features that are 1/0 que:;rlir;;th ast O queue fenge Y ()
more aggregate
"
%
N
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Input features

/ Last completed
110 2M Jast 319 Jast 4% Jast

e e e
/102, 010,2184, 056,0800, 126, 1600, 368, 3920

/ Current Queue lengths and latencies
queue length for last four completed 1/0s

/.
N Split into individual digits

1,02, 0,1,0,2,1,84, 0,5,6,0,8,0,0, 1,2,6,1,6,0,0, 3,6,8,3,9,2,0

More aggregate

features
3 fully- 87-97% accuracy
~. 31 connected mm 4-6s overhead
'~ features layers across various
'~ (31-256-2)  SSDs/traces
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Handling inaccuracy

Category Description
False Mistakenly
submits = accept a slow 1/0
Customized loss function:
cases Reduce false submits by training

up to 68%!

Mistakenly
° revoke a fast 170

False
revokes

Cost

Up to

milliseconds!
el

(\’b
¢ <
"\O

£

S5
L,
Moy
&

ps-level
failover
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Handling inaccuracy

" False submit rate
Still some

false
submits!

Training F
LinnOS ) :
with hedging

using false
submit rate!

False submit rate
X <5% (e ey 2%

X > 5% (e.g., 7%)
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Recap
Apply
(100%-X)
hedging
. (e-g, p93) |
B Aggregate features:

current queue length,
queue lengths and latencies
of history 1/Os

H ~ Apply Input
p95
) _hedging ) features
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Other designs

User-space offline training + kernel-space online inference

-+ \ os@\

‘l.‘ ..

Support re-tracing, re-training, and re-uploading weights

Can utilize additional to further reduce inference overhead

Per-1/0 fast/slow
Output binary classification

labeling 87-97% accuracy,

4-6|s per-1/O overhead,
on various SSDs/traces

Biased training
& hedging

Handling

inaccuracy
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Outline
More detail
‘in the paper!
U Evaluations

W Conclusion
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Evaluation setup o

Production traces latency-critical!

(=%
o Infer and revoke!
aAaQp___ <

L) LinnOS
P N
¢ Can failover a
$
Local flash array
1
[ T T T T 1
e mae mae OR B =

Three homogeneous Three heterogenous
consumer-level SSDs enterprise-level SSDs

&

Major metric:
Latencies of read I/Os

Methods compared:

|. Baseline
Speculation-based

2. Cloning

3. Hedging at p95

4. Hedging at IP (inflection point)
Infer-and-revoke

5. Simple heuristic

6.“Advanced” heuristic

7.LinnOS without hedging

8. LinnOS

Baseline

Read Lat. (ms)

50
40
30
20

10

BingS - Enterprise

80 90 95 99 99.9 99.99
Percentile
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BingS - Enterprise

Cloning
50
354

< - 40

E
=30 |

3
\\o - 20

©

4 T
%, 10 ¢

Slow! a a E Fast!
s s 3

80 90 95 99 99.9 99.99
Percentile

Timeout:

Hedging at p95

Read Lat. (ms)

50

BingS - Enterprise

80 90 95 99 99.9 99.99

Percentile
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Hedging at IP (inflection point)
/" Timeout: 50
LinnOS a
fast/slow 2‘ %
latency
threshold )

BingS - Enterprise

N
o

due to more 1/Os

w
o

Improvement
below p95

&%‘t“//o
Read Lat. (ms

80 90 95 99 99.9 99.99
Percentile
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Simple heuristic Heursim)

7 /"~ Example:if Example: if N

Revoke: LinnOS uses 50
p80 lat,
—~ 40
(2]
- /;E,
\_Ppercentile ),/ 7 = © 30
S T
& —
J o 20
©
[0
) T 10
Slow! E a Fast!
e : s
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BingS - Enterprise

80 90 95 99 99.9 99.99
Percentile
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“Adv” heuristic (HeurAdv) Blngs - Enterprlse

History I/Os N

S see high lat. + 50
Revoke: a low queue
HeurSim+ <O- lengthrevoke | 40 | . |
checking unless short (%) 3
history 1/0s X _current queue! / é I
N\ - p -
©
-
©
3]
(0]
o
B r improvemen
Slow! ﬁ a E Fast! ette provement,

but requires

manual tuning
Percentile
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4 Revoke: N 50
Learning- 2
based. @ 40
Auto-tunes . =
\ 8706 weights! ) \ ~ 30
I I &. \ b=
~ @é‘ \ ilu
& o 20
[0}
[0
[an

-
o
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LinnOS without hedging

BingS - Enterprise

Further

improvement
under p95!
Percentile
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LinnOS BingS - Enterprise

TN
—_— Hedging 50
. percentile =
Llnn.OS + e (100% - false
hedging for | /. submit rate) | —~ 40
false submits — UE)
_ J % =
~J w\\ o 30
=|® ©
SE 2, 3
_,-L) =l \ R o 20
\ ©
\ [0
T 10
sl B Beae

80 90 95 9§

Percentile

at p99.99!
Learning helps!
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LinnOS supports various LinnOS reduces average
workloads and devices latency by 9.6-79.6%

CHICAGO

Other evaluations

LinnOS achieves
high accuracy
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Conclusion

IR

LinnOS Light neural networkN - . -
0 extra Input require
Per-1/0 @ 87-97% accuracy

Speed -
Prediction 4-6ps overhead

Predictable
performance for
flash storage!

-— e W] B
=8 2
o=

eoe
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Predictable
performance for
flash storage!

LinnOS Light neural networkN n . -
0 extra input require
Per-1/0 @3 87-97% accuracy

Speed .
Prediction 4-6s overhead

Thank you!

Contact email:
hmz20000@uchicago.edu
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