
Storage Systems are Distributed Systems
(So Verify Them That Way!)

OSDI 2020

Travis Hance (CMU) Andrea Lattuada (ETH) Chris Hawblitzel (MSR)
Jon Howell (VMR) Rob Johnson (VMR) Bryan Parno (CMU)

What is Verification?

• Mathematical proof that a program is correct.
• Proof is checked by a computer (the verifier).

Key-value dictionary
implementation

Key-value dictionary
specification

• Complex data structure
• Handle edge cases
• 100s or 1000s of lines of

code

• Stated simply and mathematically

f : Key ⟶ Value

Put(k: Key, v: Value):
f := f[k ↦ v]

Get(k: Key):
return f(k)

2

Verifying Persistent Disk Storage Systems
Persistent key-value store

implementation
Persistent key-value store

specification
• Complex data structure
• Handle edge cases
• 100s or 1000s of lines of

code

• Stated simply and mathematically

• Expose a way for user to confirm data
has been persisted

• Data persistence on crash

• Handle asynchronous disk access
• IO-efficient data structure
• Caching (eviction policy, etc.)
• Crash safety
• CPU-efficiency

f : Key ⟶ Value

Put(k: Key, v: Value):
f := f[k ↦ v]

Get(k: Key):
return f(k)

3

Contributions

• VeriBεtrKV: a complex, verified storage system
• Crash-safe key-value store based on the Bε-tree, an established, state-of-the-

art, IO-efficient, write-optimized data structure
• Written in Dafny (compiled via C++)

• General methodology for verifying asynchronous systems
• Linear types combined with Dafny’s dynamic frames to improve the

experience of verifying efficient, imperative code

4

Modeling Disk Systems

• We need a clean & flexible way to encode environmental assumptions.
• How does the disk work?
• Assumptions about asynchronicity?
• What failure scenarios are considered?

• Observation: General problem across asynchronous systems
• IronFleet (2015) uses state machines to model networked distributed systems.
• We generalize and apply to storage systems.
• No need for a domain-specific logic!

5

Modeling Asynchronous Systems

Network

HostHost

HostHost

Network

HostHost

HostHost

Host Host

HostHost

Network
system state

machine

Host state
machine

6

Modeling Asynchronous Systems

• Templated state machine NetworkSystem<Host> is defined in terms
of Host state machine.
• This state machine definition encodes all environmental

assumptions!
• Packet delivery
• Packet reordering
• Packet duplication

• We demonstrate that we can use this approach for other
asynchronous systems, like our disk system.

7

Modeling disk systems

8

HostHost

DiskSystem<Host>

Modeling disk systems

9

Host Host

Host Host
Host

Host Host

Host step
DiskSystem<Host>

Modeling disk systems

10

HostHostHost

Disk step

Read command
Block of data

Host

DiskSystem<Host>

Modeling disk systems

11

Host

DiskSystem<Host>

HostHost

Crash &
reboot

step

Initial Host state

Host

Block of data

Network

HostHost

HostHost

Host

• Network delivering packets
• Packet reordering
• Packet duplication

• Disk
• IO queue
• Command reordering
• Host failure
• Host reinitialization
• (Limited) spontaneous data corruption

NetworkSystem<Host> DiskSystem<Host>

12

Modeling Disk Systems

• Method: encode any environmental assumptions in the definition of
templated state machine System<Host>
• Natural extension of IronFleet’s method
• Clean split between environmental assumptions (System) and

implementation details (Host)
• Environmental assumptions easy to read and understand

13

Verifying Persistent Disk Storage Systems
Persistent key-value store

implementation
Persistent key-value store

specification
• Complex data structure
• Handle edge cases
• 1000s of lines of code

• Stated simply and mathematically

• Expose a way for user to confirm data
has been persisted

• Data persistence on crash

• Handle asynchronous disk access
• IO-efficient data structure
• Caching (eviction policy, etc.)
• Crash safety
• CPU-efficiency

f : Key ⟶ Value

Put(k: Key, v: Value):
f := f[k ↦ v]

Get(k: Key):
return f(k)

14

{ a: 1, b : 2 } { a: 1, b : 3 }Application Spec

Host Host

Host model state
machine

State machine
refinement

Host Host

System state
machine

15

{ a: 1, b : 2 } { a: 1, b : 3 }Application Spec

Host Host

Host model state
machine

State machine
refinement

Floyd-Hoare logic

Implementation code
method insert(key: Key, value: Value)
{
// actual runnable code here

}

• Bε-tree operations
• Caching logic
• Journal logic

Host Host

System state
machine

16

Writing Efficient, Verified Code

• Goal: efficient, runnable code that implements this state machine.
• Imperative code with mutable update-in-place data structures

Host Host

Host model state
machine

Floyd-Hoare logic

Implementation code
method insert(key: Key, value: Value)
{
// actual runnable code here

}

• Bε-tree operations
• Caching logic
• Journal logic

17

• Dafny uses a memory-reasoning strategy called dynamic frames.
• This strategy requires explicit aliasing information.

Memory Aliasing

class Point {
var x: int;
var y: int;

}

method foo(a: Point, b: Point)
modifies a, b
requires a != b
{

a.x := 1;
b.x := b.x – 1;

assert a.x == 1;
}

method main()
{

var a := new Point();
foo(a, a);

}

18

requires a != b

predicate ReprInv()
reads this, persistentIndirectionTable, ephemeralIndirectionTable,

frozenIndirectionTable, lru, cache, blockAllocator
reads Repr()
{

&& persistentIndirectionTable.Repr !! ephemeralIndirectionTable.Repr
!! lru.Repr !! cache.Repr !! blockAllocator.Repr

&& (frozenIndirectionTable != null ==>
&& frozenIndirectionTable.Repr !! persistentIndirectionTable.Repr
&& frozenIndirectionTable.Repr !! ephemeralIndirectionTable.Repr
&& frozenIndirectionTable.Repr !! lru.Repr
&& frozenIndirectionTable.Repr !! cache.Repr
&& frozenIndirectionTable.Repr !! blockAllocator.Repr

)
&& this !in ephemeralIndirectionTable.Repr
&& this !in persistentIndirectionTable.Repr
&& (frozenIndirectionTable != null ==> this !in frozenIndirectionTable.Repr)
&& this !in lru.Repr
&& this !in cache.Repr
&& this !in blockAllocator.Repr

}

static predicate {:opaque} ReprSeqDisjoint(buckets: seq<MutBucket>)
reads set i | 0 <= i < |buckets| :: buckets[i]
{
forall i, j | 0 <= i < |buckets| && 0 <= j < |buckets| && i != j ::

buckets[i].Repr !! buckets[j].Repr
}

twostate lemma SplitChildOfIndexPreservesWFShape(node: Node, childidx: int)
// ...
requires unchanged(old(node.repr) - {node, node.contents.pivots, node.contents.children,
node.contents.children[childidx]})
// ...
requires node.contents.children[childidx].repr <= old(node.contents.children[childidx].repr)
// ...
requires fresh(node.contents.children[childidx+1].repr - old(node.contents.children[childidx].repr))
requires node.contents.children[childidx+1].height == old(node.contents.children[childidx].height)
requires DisjointSubtrees(node.contents, childidx, (childidx + 1))
requires node.repr == old(node.repr) + node.contents.children[childidx+1].repr
ensures WFShape(node)

Memory Aliasing

• Manually adding aliasing conditions is cumbersome.
• Number of pairwise conditions grows quadratically.
• Handling deep data structures requires reasoning about sets of objects.

19

Memory Aliasing

• We could just write immutable code instead …
datatype Point(x: int, y: int)

method foo(
a: Point,
b: Point)

returns (a': Point, b': Point)
{

a' := a.(x := 1);
b' := b.(x := b.x – 1);

assert a'.x == 1;
}

20

• This makes verification much easier.
• But copying objects is slower,

especially large sequences.

Faster Code with Linear Types

• What if we could:
• Verify objects as if they were immutable,
• But have the compiler generate code with in-place updates?

• Use a linear type system to enforce exclusive ownership of objects.

21

Faster Code with Linear Types

datatype Point(x: int, y: int)

method foo(
linear a: Point,
linear b: Point)

returns (linear a': Point,
linear b': Point)

{
a' := a.(x := 1);
b' := b.(x := b.x – 1);

assert a'.x == 1;
}

method main()
{

linear var a := Point(0, 0);
foo(a, a);

}

22

Adding Linear Types to Dafny

• Aliasing errors are now immediate type errors.

• Inspired by prior verification work, Cogent (2016)

• Production languages like Rust also demonstrate that linear semantics
are feasible for a lot of systems code.

• When linearity is too constraining, we can still fall back to dynamic
frames and theorem-proving.
• Enables code not expressible in a strict linear type system
• Used in key places in VeriBεtrKV

23

VeriBεtrKV Implementation

• Code is compiled via a C++ backend for Dafny

• Proof : code ratio is ~ 7, comparable to IronFleet.
• System is ~ 3x as large as IronFleet.

Component Lines of code Total
Environment model 450

730 Trusted
Application spec 280

Executable code 6,500 6,500 Impl

Host model 2,800

47,800 ProofRefinement Proof 23,000

Floyd-Hoare Proof 22,000

Trusted Compute Base (TCB)
Environment model

Application spec

Kernel API to disk reads/writes

Dafny toolchain

C++ toolchain

24

• Linear types improve both proof length and verification times.

• Maximum method-level interactive verification time dropped 42s à 32s
• 99th percentile dropped 6.1s à 4.8s
• Linear type errors are instant!

Development Process

Component LoC (dynamic frames) LoC (linear) Reduction
In-memory hash table 1967 1352 31%
In-memory search tree 2509 1904 24%

25

Performance Benchmarks

26

10 million insertion operations, 2GiB RAM, single-threaded

Performance Benchmarks

• VeriBεtrKV’s Bε-trees beats B-trees on inserts, as expected.
• VeriBεtrKV is still behind RocksDB, one of the fastest, highly-tuned

unverified key-value stores.
• VeriBεtrKV lags both BerkeleyDB and RocksDB on queries
• Memory fragmentation results in smaller effective cache size
• Missing optimizations needed to match query performance of B-trees

27

Conclusion

• Defining System<Host> state machines is a convenient and flexible
way to encode environmental assumptions for system verification.
• Linear type systems are practical for systems code and relieve both

developer and verifier burden.
• VeriBεtrKV advances towards performance of state-of-the-art non-

verified systems, with much stronger guarantees.

• Thank you
• thance@andrew.cmu.edu

28

