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What is Verification?

• Mathematical proof that a program is correct.
• Proof is checked by a computer (the verifier).

Key-value dictionary 
implementation

Key-value dictionary
specification

• Complex data structure
• Handle edge cases
• 100s or 1000s of lines of 

code

• Stated simply and mathematically

f : Key ⟶ Value

Put(k: Key, v: Value):
f := f[k ↦ v]

Get(k: Key):
return f(k)
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Verifying Persistent Disk Storage Systems
Persistent key-value store 

implementation
Persistent key-value store

specification
• Complex data structure
• Handle edge cases
• 100s or 1000s of lines of 

code

• Stated simply and mathematically

• Expose a way for user to confirm data 
has been persisted

• Data persistence on crash

• Handle asynchronous disk access
• IO-efficient data structure
• Caching (eviction policy, etc.)
• Crash safety
• CPU-efficiency

f : Key ⟶ Value

Put(k: Key, v: Value):
f := f[k ↦ v]

Get(k: Key):
return f(k)
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Contributions

• VeriBεtrKV: a complex, verified storage system
• Crash-safe key-value store based on the Bε-tree, an established, state-of-the-

art, IO-efficient, write-optimized data structure
• Written in Dafny (compiled via C++)

• General methodology for verifying asynchronous systems
• Linear types combined with Dafny’s dynamic frames to improve the 

experience of verifying efficient, imperative code
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Modeling Disk Systems

• We need a clean & flexible way to encode environmental assumptions.
• How does the disk work?
• Assumptions about asynchronicity?
• What failure scenarios are considered?

• Observation: General problem across asynchronous systems
• IronFleet (2015) uses state machines to model networked distributed systems.
• We generalize and apply to storage systems.
• No need for a domain-specific logic!
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Modeling Asynchronous Systems

Network

HostHost

HostHost

Network

HostHost

HostHost

Host Host

HostHost

Network 
system state 

machine

Host state 
machine

6



Modeling Asynchronous Systems

• Templated state machine NetworkSystem<Host> is defined in terms 
of Host state machine.
• This state machine definition encodes all environmental 

assumptions!
• Packet delivery
• Packet reordering
• Packet duplication

• We demonstrate that we can use this approach for other 
asynchronous systems, like our disk system.

7



Modeling disk systems
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Modeling disk systems
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Modeling disk systems
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Modeling disk systems
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Network

HostHost

HostHost

Host

• Network delivering packets
• Packet reordering
• Packet duplication

• Disk
• IO queue
• Command reordering
• Host failure
• Host reinitialization
• (Limited) spontaneous data corruption

NetworkSystem<Host> DiskSystem<Host>
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Modeling Disk Systems

• Method: encode any environmental assumptions in the definition of 
templated state machine System<Host>
• Natural extension of IronFleet’s method
• Clean split between environmental assumptions (System) and 

implementation details (Host)
• Environmental assumptions easy to read and understand
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Verifying Persistent Disk Storage Systems
Persistent key-value store 

implementation
Persistent key-value store

specification
• Complex data structure
• Handle edge cases
• 1000s of lines of code

• Stated simply and mathematically

• Expose a way for user to confirm data 
has been persisted

• Data persistence on crash

• Handle asynchronous disk access
• IO-efficient data structure
• Caching (eviction policy, etc.)
• Crash safety
• CPU-efficiency

f : Key ⟶ Value

Put(k: Key, v: Value):
f := f[k ↦ v]

Get(k: Key):
return f(k)
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{ a: 1, b : 2 } { a: 1, b : 3 }Application Spec

Host Host

Host model state 
machine

State machine 
refinement

Host Host

System state 
machine
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{ a: 1, b : 2 } { a: 1, b : 3 }Application Spec

Host Host

Host model state 
machine

State machine 
refinement

Floyd-Hoare logic

Implementation code
method insert(key: Key, value: Value)
{
// actual runnable code here

}

• Bε-tree operations
• Caching logic
• Journal logic

Host Host

System state 
machine
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Writing Efficient, Verified Code

• Goal: efficient, runnable code that implements this state machine.
• Imperative code with mutable update-in-place data structures

Host Host

Host model state 
machine

Floyd-Hoare logic

Implementation code
method insert(key: Key, value: Value)
{
// actual runnable code here

}

• Bε-tree operations
• Caching logic
• Journal logic
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• Dafny uses a memory-reasoning strategy called dynamic frames.
• This strategy requires explicit aliasing information.

Memory Aliasing

class Point {
var x: int;
var y: int;

}

method foo(a: Point, b: Point)
modifies a, b
requires a != b
{

a.x := 1;
b.x := b.x – 1;

assert a.x == 1;
}

method main()
{

var a := new Point();
foo(a, a);

}
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requires a != b

predicate ReprInv()
reads this, persistentIndirectionTable, ephemeralIndirectionTable,

frozenIndirectionTable, lru, cache, blockAllocator
reads Repr()
{

&& persistentIndirectionTable.Repr !! ephemeralIndirectionTable.Repr
!! lru.Repr !! cache.Repr !! blockAllocator.Repr

&& (frozenIndirectionTable != null ==>
&& frozenIndirectionTable.Repr !! persistentIndirectionTable.Repr
&& frozenIndirectionTable.Repr !! ephemeralIndirectionTable.Repr
&& frozenIndirectionTable.Repr !! lru.Repr
&& frozenIndirectionTable.Repr !! cache.Repr
&& frozenIndirectionTable.Repr !! blockAllocator.Repr

)
&& this !in ephemeralIndirectionTable.Repr
&& this !in persistentIndirectionTable.Repr
&& (frozenIndirectionTable != null ==> this !in frozenIndirectionTable.Repr)
&& this !in lru.Repr
&& this !in cache.Repr
&& this !in blockAllocator.Repr

} 

static predicate {:opaque} ReprSeqDisjoint(buckets: seq<MutBucket>)
reads set i | 0 <= i < |buckets| :: buckets[i]
{
forall i, j | 0 <= i < |buckets| && 0 <= j < |buckets| && i != j ::

buckets[i].Repr !! buckets[j].Repr
}

twostate lemma SplitChildOfIndexPreservesWFShape(node: Node, childidx: int)
// ...
requires unchanged(old(node.repr) - {node, node.contents.pivots, node.contents.children, 
node.contents.children[childidx]})
// ...
requires node.contents.children[childidx].repr <= old(node.contents.children[childidx].repr)
// ...
requires fresh(node.contents.children[childidx+1].repr - old(node.contents.children[childidx].repr))
requires node.contents.children[childidx+1].height == old(node.contents.children[childidx].height)
requires DisjointSubtrees(node.contents, childidx, (childidx + 1))
requires node.repr == old(node.repr) + node.contents.children[childidx+1].repr
ensures WFShape(node)

Memory Aliasing

• Manually adding aliasing conditions is cumbersome.
• Number of pairwise conditions grows quadratically.
• Handling deep data structures requires reasoning about sets of objects.
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Memory Aliasing

• We could just write immutable code instead …
datatype Point(x: int, y: int)

method foo(
a: Point,
b: Point)

returns (a': Point, b': Point)
{

a' := a.(x := 1);
b' := b.(x := b.x – 1);

assert a'.x == 1;
}
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• This makes verification much easier.
• But copying objects is slower, 

especially large sequences.



Faster Code with Linear Types

• What if we could:
• Verify objects as if they were immutable,
• But have the compiler generate code with in-place updates?

• Use a linear type system to enforce exclusive ownership of objects.
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Faster Code with Linear Types

datatype Point(x: int, y: int)

method foo(
linear a: Point,
linear b: Point)

returns (linear a': Point,
linear b': Point)

{
a' := a.(x := 1);
b' := b.(x := b.x – 1);

assert a'.x == 1;
}

method main()
{

linear var a := Point(0, 0);
foo(a, a);

}
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Adding Linear Types to Dafny

• Aliasing errors are now immediate type errors.

• Inspired by prior verification work, Cogent (2016)

• Production languages like Rust also demonstrate that linear semantics 
are feasible for a lot of systems code.

• When linearity is too constraining, we can still fall back to dynamic 
frames and theorem-proving.
• Enables code not expressible in a strict linear type system
• Used in key places in VeriBεtrKV
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VeriBεtrKV Implementation

• Code is compiled via a C++ backend for Dafny

• Proof : code ratio is ~ 7, comparable to IronFleet.
• System is ~ 3x as large as IronFleet.

Component Lines of code Total
Environment model 450

730 Trusted
Application spec 280

Executable code 6,500 6,500 Impl

Host model 2,800

47,800 ProofRefinement Proof 23,000

Floyd-Hoare Proof 22,000

Trusted Compute Base (TCB)
Environment model

Application spec

Kernel API to disk reads/writes

Dafny toolchain

C++ toolchain
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• Linear types improve both proof length and verification times.

• Maximum method-level interactive verification time dropped 42s à 32s
• 99th percentile dropped 6.1s à 4.8s
• Linear type errors are instant!

Development Process

Component LoC (dynamic frames) LoC (linear) Reduction
In-memory hash table 1967 1352 31%
In-memory search tree 2509 1904 24%
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Performance Benchmarks

26

10 million insertion operations, 2GiB RAM, single-threaded



Performance Benchmarks

• VeriBεtrKV’s Bε-trees beats B-trees on inserts, as expected.
• VeriBεtrKV is still behind RocksDB, one of the fastest, highly-tuned 

unverified key-value stores.
• VeriBεtrKV lags both BerkeleyDB and RocksDB on queries
• Memory fragmentation results in smaller effective cache size
• Missing optimizations needed to match query performance of B-trees
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Conclusion

• Defining System<Host> state machines is a convenient and flexible 
way to encode environmental assumptions for system verification.
• Linear type systems are practical for systems code and relieve both 

developer and verifier burden.
• VeriBεtrKV advances towards performance of state-of-the-art non-

verified systems, with much stronger guarantees.

• Thank you
• thance@andrew.cmu.edu
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