
Protean:
VM Allocation Service at Scale

Ori Hadary
Ishai Menache
Esaias E Greeff
Star Dorminey
Yang Chen
Thomas Moscibroda

Luke Marshall
Abhisek Pan
David Dion
Shailesh Joshi
Mark Russinovich

/ Research

Protean

• Virtual machine allocation service for Microsoft Azure

• Allocates millions of VMs to millions of servers every day

• Runs at Zone Scale (100k machines)

• Critical for Azure Operations

Azure – Scale, Diversity, Uncertainty

Regions

Edge Sites

Microsoft Azure
The World’s Computer

Regions61 Edge sites170+ Machines2M+ 5M+ New VMs / day

Topology

• Region
• Multiple datacenters for redundancy and

availability
• 1 – 3 availability zones

• Availability Zone
• Unique physical location
• Independent power, cooling and networking
• 100k+ machines
• One or more DCs housing 100+ clusters

• Cluster
• Homogenous set of 1000 – 3000 machines

Azure

Region

Availability Zone

Data Center

Cluster

Cluster

Rack Rack

Protean

Rack Machines

Hardware diversity

• Hardware generations

• Machine configurations
• CPU / Memory optimized
• Accelerators with high-

performance interconnects

• Disaggregated architectures

• Containerized Datacenters

Azure Services

IAAS Database Job Scheduling Microservices

AI & ML Serverless Evictable Analytics

Platform Workload

IAAS Database Job Scheduling Microservices

AI & ML Serverless Evictable Analytics

Groups of Virtual Machines

S
e
rv

ic
e
s

V
M

s

Machine-VM Assignment

Protean

IAAS Database Job Scheduling Microservices

AI & ML Serverless Evictable Analytics

Groups of Virtual Machines

S
e
rv

ic
e
s

V
M

s
H

W

Virtual Machines

224 Cores

12TB RAM

Beast V2

64 Cores

768 GB

224 Cores

12TB

72 Cores

4TB

32 Cores

512 GB

52 Cores

576 GB

• Discrete resource requirements (VM type)
• 700+ types and growing!

• Newer VM Types not supported in older generations

• Priority
• All-or-nothing allocation and seamless failovers

• Preemptions

1 Core

2 GB

Cores

M
e
m

o
ry

Distribution of VM Types

• Large number of VM types with some
popular types

• Most VMs use 1 – 4 cores

Variation in Demand

Average # requests per day-of-week Requests in a Zone over a day

Diurnal patterns with intermittent spikes

Objectives

• Excellent customer experience
• Prefer machines that can start VM faster
• Minimize disruptions due to scheduled hardware maintenance
• Low eviction rates

• Low fragmentation
• 1% reduction can lead to $100M savings per year!
• Improves acceptance rates for large VMs

• Extensibility and Adaptability
• Easy and safe to add new behavior, or tune existing behavior

• Interpretability
• Why did my VM creation fail?

Handling Complexity

15

Rule-Based Allocation Logic

Validator Rules

(Hard constraints)

Preference Rules

(Soft constraints)

etc.

Prefer Emptier Clusters

Prefer Best Fit

Prefer Non-Empty Machines

Validator Rules

Example:

AreNodeResourcesValid
• Does machine x have enough capacity to accommodate VM v?

interface IValidatorRule
{

// Is machine (or cluster) x a valid candidate for placing VM v?
bool IsValid(Node x, VM v);

}

Preference Rules

Example:

PreferNonEmptyMachines
• Improve packing quality by preferring non-empty machines

interface IPreferenceRule
{

// Which node (or cluster) between x and y is preferable for VM v?
bool Compare(Node x, Node y, VM v);

}

Handling Multiple Preference Rules

• Strict prioritization requires “smoothing” of rules
• Extreme discrimination by a rule makes weaker rules inconsequential

• Continuous score values are quantized into a few buckets.

Example:

PreferBestFit

• Multi-dimensional best-fit

• Assigns a weighted score S ∈ [0,1] to a machine

• Each resource is weighed by its global scarcity

• The score is quantized into N buckets

Latency & Throughput at Scale

Throughput at Zone Scale

• Scale throughput as inventory and demand grows

• Multiple allocation agents operating concurrently

• Optimistic concurrency

• Fine-grained conflict detection

• Adaptive conflict reduction strategies during peak demand

Latency

• Keep allocation times bounded as inventory grows
• Low-overhead step to pre-select eligible and high-quality clusters

• Limits the number of machines used in machine selection step

• Multi-layered caching to expedite machine selection

Motivations for Caching

• Requests exhibit temporal locality
• Requests are similar, even considering all traits

• Inventory changes slowly
• Primarily due to VM creates and deletes

Baseline Implementation

class AreNodeResourcesValid : IValidatorRule
{

bool IsValid(Node x, VM v)
{

return AreNodeResourcesValid(x,v.Type);
}

}

Storing Rule State

Store state in long-lived rule object

Cache and reuse

class AreNodeResourcesValid : IValidatorRule
{

RuleState:

bool IsValid(Node x, VM v)
{

return RuleState[x][v.Type];
}

}

VM Type Node IsValid

A N1 true

B N1 true

Updating Rule State

class AreNodeResourcesValid : IValidatorRule
{

RuleState:

bool IsValid(Node x, VM v)
{

return RuleState[x][v.Type];
}

void Update(Node[] modified)
{

foreach (Node x in modified)
foreach (VMType t in RuleState.VMTypes)

RuleState[x][t] = AreNodeResourcesValid(x,t);
}

}

Update is called immediately
before the rule object is used,
with the latest state for modified
machines

Further Improvements?

VM Type Node IsValid

A N1 true

B N1 true

Splitting Rule State

Separate objects for each VM type
• r1 = new AreNodeResourcesValid(A)

• r2 = new AreNodeResourcesValid(B)

Reduces computation further

Object r1 processes all requests of
type A

class AreNodeResourcesValid : IValidatorRule
{

RuleState:

VMType T;

bool IsValid(Node x)
{

return RuleState[x];
}

void Update(Node[] modified)
{

foreach (Node x in modified)
RuleState[x] = AreNodeResourcesValid(x,T);

}
}

Node IsValid

N1 true

Caching Complete Evaluation State

RuleEvaluationObject
{

Dictionary<ITraitType,ITraitValue> identifier;

OrderedList<Node> sortedNodes;

OrderedList<IRule> ruleObjects;
}

Request Traits: X ∈ {x1, x2} ; Y ∈ {y1, y2}

Rules: R1 depends on X and Y,
R2 depends on X.

• Encapsulate and store entire evaluation state for a request

• Characterized by a vector of trait values

• Reused for all requests with the same combination of trait
values

Cache Evaluation

Latency Improvement due to Cache Hits Memory Footprint vs Inventory Size

Thank you!

Azure VM packing trace
https://github.com/Azure/AzurePublicDataset

Contact: protean_azure@microsoft.com

Team Protean:

Jason Chu Chris Cowdery Dustin Dobransky

Eric Hao Ryan Hidalgo Valentina Li

John Miller Mukund Nigam Jason Seo

Kanishk Thareja Karel Trueba Yiran Wei

Brian Yan

https://github.com/Azure/AzurePublicDataset

