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How does Clockwork Achieve
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Design Principles

| Goal: 1000s of models, many users, limited resources |



Design Principles

| Goal: 1000s of models, many users, limited resources |




Design Principles

| Goal: 1000s of models, many users, limited resources |

1. Predictable worker with no choices | Maximize sharing




Design Principles

i Goal: 1000s of models, many users, limited resources {

1. Predictable worker with no choices | Maximize sharing

2. Consolidating choices at a central controller




Design Principles

i Goal: 1000s of models, many users, limited resources |

1. Predictable worker with no choices | Maximize sharing

2. Consolidating choices at a central controller

3. Deadline-aware scheduling for SLO compliance
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SLO-aware Scheduling
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Experiment Setup

12 Workers: NVIDIA Tesla v100 GPU | 32 GB GPU Memory + 1 Controller + 1 Client

Microsoft’s Azure Functions =8 46 000 functions, 2 weeks

Workload

Shahrad et al. “Serverless in the Wild: Characterizing - Heavy sustained workloads
and Optimizing the Serverless Workload at a Large - Low utilization cold workloads

- Workloads with periodic spikes
- Bursty workloads

Cloud Provider.” USENIX ATC 2020

4026 model instanCces afsmmmmmmd
- Saturates 768 GB RAM
- 61 different model architectures
- ResNet, DenseNet, Inception, etc.
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Are Clockwork Workers Predictable?

Clockwork relies on predicting the model Overpredictions — Idle resources
inference latency tor scheduling Underpredictions — SLO violations
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Does Clockwork Controller Scale?

120000
= 100000
30000
60000
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)

Peak Goodput

Linear scalability until
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Goodput limited by
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Number of Workers
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Does Clockwork Controller Scale?

Bottleneck shifts
,\120000 Linear scalability until ~ to Clockwork Methodology

H# k =11 - Replace GPU workers with
100000 #orkers =110

emulated workers
Goodput limited by

80000 worker’s utilization ="

- From the controller’s vantage
point, nothing changes

- Measure the peak goodput
as we vary #workers

Maximum goodput:
103,387 r/s for 110 workers

0O 20 40 60 80 100120140
Number of Workers
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¢ Clockwork: From DNN predictability to an E2E predictable DNN serving platform
' - Recursively ensures that all internal architecture components have predictable performance

- Concentrating all choices in a centralized controller
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¢ Clockwork: From DNN predictability to an E2E predictable DNN serving platform
" - Recursively ensures that all internal architecture components have predictable performance
- Concentrating all choices in a centralized controller
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- Efficiently fulfills aggressive tail-latency SLOs

- Supports 1000s of DNN models with varying workload
characteristics concurrently on each GPU
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- Efficiently fulfills aggressive tail-latency SLOs

- Supports 1000s of DNN models with varying workload
characteristics concurrently on each GPU
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