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Low Tail Latency is Critical in Datacenters

• High degrees of fanout

• Overall performance 
determined by tail latency



Must Balance Latency with Efficiency
Ideal: Operate hardware at 100% utilization

Operators pack multiple tasks on each machine

Latency-Critical
tasks

Best-Effort
tasks



Challenge: Noisy Neighbors
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Tasks on the same CPU 
contend for shared 
resources

• Cores
• Caches
• Memory bandwidth
• Shared execution units

D

Shared Resources

Interference



Challenge: Resource Usage Constantly 
Shifts

• Application load can be bursty at microsecond-scales
• Network traffic on Google datacenter machines
• Thread wakeups in Microsoft’s Bing service

• Many applications exhibit phased behaviors
• Compression, compilation
• Spark compute jobs
• Garbage collection
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Interference Example
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How fast must we react?

7100 μs window to react to keep latencies below SLO

Interference 
begins

100 μs 
window



Existing Solutions
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Existing Solutions
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Existing solutions solve the 
problem by partitioning resources

e.g. dedicating cores, partitioning 
caches, etc.



Existing Solutions

Recent systems dynamically 
adjust partitions
• Heracles [ISCA ‘15] 

• Converges in 30 seconds
• Parties [ASPLOS ‘19]

• Converges in 10-20 seconds
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Existing solutions solve the 
problem by partitioning resources

e.g. dedicating cores, partitioning 
caches, etc.

100,000x too slow for GC example



Goal

Provide strict performance isolation and high resource utilization for 
datacenter servers

Not achievable unless we can detect and mitigate interference at 
microsecond timescales
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Challenges at the μs-Timescale

Finding signals that accurately indicate interference
• Multiple types of interference (LLC, Memory bandwidth, etc)
• Many possible tasks could be causing interference
• Commonly used signals take milliseconds or more to stabilize

Gathering signals and reacting with low overhead
• Existing mechanisms don’t scale well with many cores and tasks
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Caladan’s Contributions

• Use exclusively core allocation to manage interference
• Previous systems partition caches, memory bandwidth, etc

• New signals for multiple forms of interference
• Accurately identify type and source in microseconds

• KSCHED: kernel module to make signal gathering and core 
allocation scalable
• Can collect perf counters from all cores in several microseconds
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Unallocated

Caladan’s Components
• Scheduler core spin polls 

for signals, assigns tasks to 
cores

• Tasks link with runtimes
• Provide threading, I/O, etc.
• Expose signals to scheduler

• KSCHED accelerates 
scheduling and access to 
remote performance 
counters
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Mitigating Interference
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Signal Sources

18

Unallocated
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Core Allocation
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Unallocated
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Existing systems use Linux 
system calls for scheduling

sched_setaffinity(), tgkill(), etc.

KSCHED Optimizations:
- Offload scheduling work
- Multicast Inter-processor 

Interrupts (IPI)
- Asynchronous interface



Mitigating Memory Bandwidth 
Interference
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Example: Mitigating Memory Bandwidth 
Interference
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Example: Mitigating Memory Bandwidth 
Interference
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Example: Mitigating Memory Bandwidth 
Interference
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Example: Mitigating Memory Bandwidth 
Interference
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Unallocated

Example: Mitigating Memory Bandwidth 
Interference
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Implementation

Scheduler
• Optimized to run the full control loop every 10 μs
• 3500 LOC

KSCHED
• Runs on the Linux Kernel 5.2.0
• Leverages hardware multicast IPIs
• 530 LOC

Runtime
• derived from Shenango [NSDI ‘19]
• Integrated libibverbs and SPDK to provide direct access to I/O devices

• 3000 LOC
• Supports Mellanox ConnectX-5
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Evaluation

1. How does Caladan compare to state-of-the-art systems?
2. Are Caladan's benefits generalizable to many tasks sharing a server?

State-of-the-art: Parties [ASPLOS ‘19]
• Adjusts core and cache partitions
• 500 ms decision interval, 10-20 seconds convergence
• Our implementation: Parties*

Ported Tasks:
• Latency-Critical: memcached, storage service, silo database
• Best-Effort: streamcluster and swaptions-GC (PARSEC)
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Memcached and GC
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Caladan can improve latency 11,000x when interference is phased



Colocating Many Tasks

• 3 Latency-Critical Tasks
• Memcached
• Flash storage service
• Silo

• 2 Best-Effort Tasks 
• Swaptions (GC Task)
• Streamcluster

30 seconds, variable load and interference
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Core allocations 
occur up to 230,000 

times per second
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Requirements for Applications

Applications must link with the runtime
• Export signals, balance work across active cores
• Realistic programming model

• Partial compatibility layer for some systems libraries

LC applications must expose internal parallelism to runtime
• Example: Memcached modified to spawn a thread per-connection

• Allows scheduler to observe delays
• Allows scheduler to mitigate delays with additional cores

No required changes for BE tasks
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Conclusion

Caladan improves machine utilization and performance isolation for 
low-latency workloads when colocated with noisy best-effort tasks

• Uses no hardware partitioning mechanisms, only rapid core-scheduling
• Uses carefully selected control signals
• Employs many optimizations to make signal collection and core allocation 

efficient

• Offers 11,000x latency improvement over the state-of-the-art for a latency-
critical workload when there is phased interference
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https://github.com/shenango/caladan

https://github.com/shenango/caladan

