
SafetyPin: Encrypted Backups 
with Human-Memorable Secrets

Emma Dauterman (UC Berkeley),

Henry Corrigan-Gibbs (EPFL and MIT CSAIL), and


David Mazières (Stanford)

1

OSDI 2020



Mobile backups today
1. User only needs to remember her screen-lock PIN.

+ PINs are easy to remember and not known to the service provider.

- PINs have low-entropy.


2. Secure hardware prevents brute-force attacks against PIN.

+ Hardware security modules (HSMs) are resistant to physical attacks.

- HSMs are not perfect.
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State-of-the-art
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State-of-the-art vs. SafetyPin: security
SafetyPin

1 compromise = Millions of backups < N/16 compromises = 0 backups

SafetyPin tolerates many HSM compromises.

N HSMs



State-of-the-art
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State-of-the-art vs. SafetyPin: scalability
SafetyPin

Client talks to a single HSM. Client talks to a few HSMs (e.g. 40).

SafetyPin doesn’t sacrifice scalability.

N HSMs



State-of-the-art
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State-of-the-art vs. SafetyPin: fault tolerance
SafetyPin

Tolerates many failures between backups (e.g. N/64).

N HSMs



6

Claim: compromising more HSMs is more expensive

• The cost of physical attacks scales linearly with the number of HSMs.

• Physically attacking more HSMs increases the risk of exposure.

• Some protection against software bugs with diverse HSMs.

More HSMs improve security and performance

# HSMs in system

# HSMs an 
attacker must 
compromise

SafetyPin

State-of-the-art
# HSMs in system

# Recoveries 
processed per 

second SafetyPin

State-of-the-art
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Storage sever

HSMs

Service provider

Attack scenario
Service provider (e.g. Google) sets up the 
system correctly.


Later, attacker wants to obtain user backups.


Attacker can:

• observe/modify network traffic,

• control the storage server, and

• adaptively compromise many HSMs.
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1. SafetyPin design 

• Overview 
• Scalable rate-limiting


2. SafetyPin evaluation
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Outline



Idea: Hide the identities of a small, fixed set of HSMs a user can recover with.


• Scalability: The user can recover with a small set of HSMs.


• Security: Without the PIN, the attacker can’t identify the set of HSMs.
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SafetyPin design idea

[System parameterized to support 1B recoveries per year with 128-bit security]
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Backup [simplified]

1. Select  HSMs using a PIN.


2. Break message into  shares  such that  needed to recover.


3. Encrypt a share  to each selected HSM .

n ≈ 40

n ≈ 40 m1, …, mn n/2

mi i

message
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Backup [simplified]

1. Select  HSMs using a PIN.
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mi i
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The attacker can't identify the set of HSMs without the PIN because

• client doesn't interact with HSMs, and

• ciphertexts don’t leak identities of HSMs.

message
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Recovery [simplified]

1. Retrieve ciphertexts.

2. Compute the set of  HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the message from responses.

n ≈ 40
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Recovery [simplified]
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mn
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1. Retrieve ciphertexts.

2. Compute the set of  HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the message from responses.

n ≈ 40

Attacker watching user recover 
learns information about the PIN.

message



1. SafetyPin design 
• Overview


• Scalable rate-limiting 

2. SafetyPin evaluation
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Problem: Introduces a scalability bottleneck.

Each HSM must enforce a global PIN attempt limit for every user.

Tool: Public append-only log maintained by HSMs. 

[Simplified version that allows a single recovery attempt]

Scalable rate-limiting



Log structured as set of key-value pairs.

Distributed log design

Core invariant: If a HSM accepts 
(key, value), it will not accept (key, 
value’) where value != value’.

Maintains log

Each HSM stores log digest
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Application: scalable-rate limiting 
Each key is a username, and each value commits 
to a recovery attempt.



Log structured as a binary search tree


• ordered by key (username), where


• leaves are values (commitments to recovery attempts).

16

Alice Charlie

Distributed log implementation 
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Alice Charlie Alice CharlieBob

Updating the log

Core invariant: If a HSM accepts (key, value), it 
will not accept (key, value’) where value != value’.
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Alice Charlie Alice CharlieAlice

Updating the log

Core invariant: If a HSM accepts (key, value), it 
will not accept (key, value’) where value != value’.



Periodically, service provider


• computes a Merkle tree over the leaves, and


• sends a new Merkle root to the HSMs.


HSMs must check that the new log head extends the old log head.
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Updating the log



Updating log digest at the HSMs with distributed auditing

20

Old digest , new digest d d′�Old log , new log L L′�

Data center HSM
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Updating log digest at the HSMs with distributed auditing

20

Old digest , new digest d d′�Old log , new log L L′�

If each requested chunk 
keeps  recovery 
attempt per user, sign new 
digest .

≤ 1

d′�

Divide updates into  chunks.N
Request  chunksλ ≈ 128

Data center HSM

Signature
Aggregate 
signatures from all 
HSMs [BGLS03].

Aggregate signature If signature verifies, accept 
new digest .d′�



• Scalability: Each HSM checks  chunks and verifies one signature.


• Security: The attacker corrupts the log undetected with probability 2-128.


• Transparency:  

• Clients can monitor recovery attempts made on their behalf.


• External auditors can audit the log.


• An attacker that later compromises all HSMs can’t erase evidence.

λ ≈ 128
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Distributed auditing properties



At recovery, the attacker sees which HSMs to compromise to obtain backup.


• Challenge: Revoking ability to decrypt requires large HSM secret keys


• Idea: Outsourced storage with secure deletion
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Making SafetyPin practical for resource-limited hardware (see paper)



1. SafetyPin design

• Overview

• Scalable rate-limiting


2. SafetyPin evaluation 
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Implementation setup
https://github.com/edauterman/SafetyPin 

Android Pixel 4 100 $20 SoloKeys

Linux machine

100 SoloKeys = slice of cluster that can process 1B recoveries/year

https://github.com/edauterman/SafetyPin
https://github.com/edauterman/SafetyPin
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Overhead with resource-limited HSMs 
• Recovering a backup takes 1.01s.


Client cost 
• Generating a recovery ciphertext takes 0.37s.

• Client must download 2MB of HSM keys each day.
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Evaluation summary: experimental results



Total system cost 
• Supporting 1B recoveries per year costs

• $61K with SoloKeys (hardware we used), and

• $15M with high-quality HSMs.


• Cost of storing 4GB for 1B users: $600M.
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Evaluation summary: system estimates



• Today, secure hardware is often a single point of failure.

• This doesn’t have to be the case.


• We should never settle for reduced security.

• Computational limits of HSMs are not an excuse.
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Secure hardware doesn't need to be trusted hardware
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https://github.com/edauterman/SafetyPin

Thanks!

Secure hardware doesn't need to be trusted hardware
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