
SafetyPin: Encrypted Backups
with Human-Memorable Secrets

Emma Dauterman (UC Berkeley),

Henry Corrigan-Gibbs (EPFL and MIT CSAIL), and

David Mazières (Stanford)

1

OSDI 2020

Mobile backups today
1. User only needs to remember her screen-lock PIN.

+ PINs are easy to remember and not known to the service provider.

- PINs have low-entropy.

2. Secure hardware prevents brute-force attacks against PIN.

+ Hardware security modules (HSMs) are resistant to physical attacks.

- HSMs are not perfect.

2

State-of-the-art

3

State-of-the-art vs. SafetyPin: security
SafetyPin

1 compromise = Millions of backups < N/16 compromises = 0 backups

SafetyPin tolerates many HSM compromises.

N HSMs

State-of-the-art

4

State-of-the-art vs. SafetyPin: scalability
SafetyPin

Client talks to a single HSM. Client talks to a few HSMs (e.g. 40).

SafetyPin doesn’t sacrifice scalability.

N HSMs

State-of-the-art

5

State-of-the-art vs. SafetyPin: fault tolerance
SafetyPin

Tolerates many failures between backups (e.g. N/64).

N HSMs

6

Claim: compromising more HSMs is more expensive

• The cost of physical attacks scales linearly with the number of HSMs.

• Physically attacking more HSMs increases the risk of exposure.

• Some protection against software bugs with diverse HSMs.

More HSMs improve security and performance

HSMs in system

HSMs an
attacker must
compromise

SafetyPin

State-of-the-art
HSMs in system

Recoveries
processed per

second SafetyPin

State-of-the-art

7

Storage sever

HSMs

Service provider

Attack scenario
Service provider (e.g. Google) sets up the
system correctly.

Later, attacker wants to obtain user backups.

Attacker can:

• observe/modify network traffic,

• control the storage server, and

• adaptively compromise many HSMs.

8

Service provider (e.g. Google) sets up the
system correctly.

Later, attacker wants to obtain user backups.

Attacker can:

• observe/modify network traffic,

• control the storage server, and

• adaptively compromise many HSMs.

Storage sever

HSMs

Service provider

Attack scenario

8

Service provider (e.g. Google) sets up the
system correctly.

Later, attacker wants to obtain user backups.

Attacker can:

• observe/modify network traffic,

• control the storage server, and

• adaptively compromise many HSMs.

Storage sever

HSMs

Service provider

Attack scenario

8

Service provider (e.g. Google) sets up the
system correctly.

Later, attacker wants to obtain user backups.

Attacker can:

• observe/modify network traffic,

• control the storage server, and

• adaptively compromise many HSMs.

Storage sever

HSMs

Service provider

Attack scenario

1. SafetyPin design

• Overview
• Scalable rate-limiting

2. SafetyPin evaluation

9

Outline

Idea: Hide the identities of a small, fixed set of HSMs a user can recover with.

• Scalability: The user can recover with a small set of HSMs.

• Security: Without the PIN, the attacker can’t identify the set of HSMs.

10

SafetyPin design idea

[System parameterized to support 1B recoveries per year with 128-bit security]

11

Backup [simplified]

1. Select HSMs using a PIN.

2. Break message into shares such that needed to recover.

3. Encrypt a share to each selected HSM .

n ≈ 40

n ≈ 40 m1, …, mn n/2

mi i

message

11

Backup [simplified]

1. Select HSMs using a PIN.

2. Break message into shares such that needed to recover.

3. Encrypt a share to each selected HSM .

n ≈ 40

n ≈ 40 m1, …, mn n/2

mi i

H𝗎𝗌𝖾𝗋(𝗉𝗂𝗇)

message

11

Backup [simplified]

1. Select HSMs using a PIN.

2. Break message into shares such that needed to recover.

3. Encrypt a share to each selected HSM .

n ≈ 40

n ≈ 40 m1, …, mn n/2

mi i

H𝗎𝗌𝖾𝗋(𝗉𝗂𝗇)

m1
m1
m1
m1
mn

message

11

Backup [simplified]

1. Select HSMs using a PIN.

2. Break message into shares such that needed to recover.

3. Encrypt a share to each selected HSM .

n ≈ 40

n ≈ 40 m1, …, mn n/2

mi i

H𝗎𝗌𝖾𝗋(𝗉𝗂𝗇)

m1
m1
m1
m1
mn

The attacker can't identify the set of HSMs without the PIN because

• client doesn't interact with HSMs, and

• ciphertexts don’t leak identities of HSMs.

message

12

Recovery [simplified]

1. Retrieve ciphertexts.

2. Compute the set of HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the message from responses.

n ≈ 40

12

Recovery [simplified]

m1
m1
m1
m1
mn

1. Retrieve ciphertexts.

2. Compute the set of HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the message from responses.

n ≈ 40

12

Recovery [simplified]

H𝗎𝗌𝖾𝗋(𝗉𝗂𝗇)

m1
m1
m1
m1
mn

1. Retrieve ciphertexts.

2. Compute the set of HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the message from responses.

n ≈ 40

12

Recovery [simplified]

H𝗎𝗌𝖾𝗋(𝗉𝗂𝗇) m1

mn

m1
m1
m1
m1
mn

1. Retrieve ciphertexts.

2. Compute the set of HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the message from responses.

n ≈ 40

12

Recovery [simplified]

H𝗎𝗌𝖾𝗋(𝗉𝗂𝗇) m1

mn

m1
m1
m1
m1
mn

m1

mn

1. Retrieve ciphertexts.

2. Compute the set of HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the message from responses.

n ≈ 40

12

Recovery [simplified]

H𝗎𝗌𝖾𝗋(𝗉𝗂𝗇) m1

mn

m1
m1
m1
m1
mn

m1

mn

1. Retrieve ciphertexts.

2. Compute the set of HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the message from responses.

n ≈ 40

message

12

Recovery [simplified]

H𝗎𝗌𝖾𝗋(𝗉𝗂𝗇) m1

mn

m1
m1
m1
m1
mn

m1

mn

1. Retrieve ciphertexts.

2. Compute the set of HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the message from responses.

n ≈ 40

Attacker watching user recover
learns information about the PIN.

message

1. SafetyPin design
• Overview

• Scalable rate-limiting

2. SafetyPin evaluation

13

Outline

14

Problem: Introduces a scalability bottleneck.

Each HSM must enforce a global PIN attempt limit for every user.

Tool: Public append-only log maintained by HSMs.

[Simplified version that allows a single recovery attempt]

Scalable rate-limiting

Log structured as set of key-value pairs.

Distributed log design

Core invariant: If a HSM accepts
(key, value), it will not accept (key,
value’) where value != value’.

Maintains log

Each HSM stores log digest

15

Log structured as set of key-value pairs.

Distributed log design

Core invariant: If a HSM accepts
(key, value), it will not accept (key,
value’) where value != value’.

Maintains log

Each HSM stores log digest

15

Application: scalable-rate limiting
Each key is a username, and each value commits
to a recovery attempt.

Log structured as a binary search tree

• ordered by key (username), where

• leaves are values (commitments to recovery attempts).

16

Alice Charlie

Distributed log implementation

17

Alice Charlie Alice CharlieBob

Updating the log

Core invariant: If a HSM accepts (key, value), it
will not accept (key, value’) where value != value’.

18

Alice Charlie Alice CharlieAlice

Updating the log

Core invariant: If a HSM accepts (key, value), it
will not accept (key, value’) where value != value’.

Periodically, service provider

• computes a Merkle tree over the leaves, and

• sends a new Merkle root to the HSMs.

HSMs must check that the new log head extends the old log head.

19

Updating the log

Updating log digest at the HSMs with distributed auditing

20

Old digest , new digest d d′�Old log , new log L L′�

Data center HSM

Updating log digest at the HSMs with distributed auditing

20

Old digest , new digest d d′�Old log , new log L L′�

Divide updates into chunks.N

Data center HSM

Updating log digest at the HSMs with distributed auditing

20

Old digest , new digest d d′�Old log , new log L L′�

Divide updates into chunks.N
Request chunksλ ≈ 128

Data center HSM

Updating log digest at the HSMs with distributed auditing

20

Old digest , new digest d d′�Old log , new log L L′�

If each requested chunk
keeps recovery
attempt per user, sign new
digest .

≤ 1

d′�

Divide updates into chunks.N
Request chunksλ ≈ 128

Data center HSM

Updating log digest at the HSMs with distributed auditing

20

Old digest , new digest d d′�Old log , new log L L′�

If each requested chunk
keeps recovery
attempt per user, sign new
digest .

≤ 1

d′�

Divide updates into chunks.N
Request chunksλ ≈ 128

Data center HSM

Signature

Updating log digest at the HSMs with distributed auditing

20

Old digest , new digest d d′�Old log , new log L L′�

If each requested chunk
keeps recovery
attempt per user, sign new
digest .

≤ 1

d′�

Divide updates into chunks.N
Request chunksλ ≈ 128

Data center HSM

Signature
Aggregate
signatures from all
HSMs [BGLS03].

Updating log digest at the HSMs with distributed auditing

20

Old digest , new digest d d′�Old log , new log L L′�

If each requested chunk
keeps recovery
attempt per user, sign new
digest .

≤ 1

d′�

Divide updates into chunks.N
Request chunksλ ≈ 128

Data center HSM

Signature
Aggregate
signatures from all
HSMs [BGLS03].

Aggregate signature

Updating log digest at the HSMs with distributed auditing

20

Old digest , new digest d d′�Old log , new log L L′�

If each requested chunk
keeps recovery
attempt per user, sign new
digest .

≤ 1

d′�

Divide updates into chunks.N
Request chunksλ ≈ 128

Data center HSM

Signature
Aggregate
signatures from all
HSMs [BGLS03].

Aggregate signature If signature verifies, accept
new digest .d′�

• Scalability: Each HSM checks chunks and verifies one signature.

• Security: The attacker corrupts the log undetected with probability 2-128.

• Transparency:

• Clients can monitor recovery attempts made on their behalf.

• External auditors can audit the log.

• An attacker that later compromises all HSMs can’t erase evidence.

λ ≈ 128

21

Distributed auditing properties

At recovery, the attacker sees which HSMs to compromise to obtain backup.

• Challenge: Revoking ability to decrypt requires large HSM secret keys

• Idea: Outsourced storage with secure deletion

22

Making SafetyPin practical for resource-limited hardware (see paper)

1. SafetyPin design

• Overview

• Scalable rate-limiting

2. SafetyPin evaluation

23

Outline

24

Implementation setup
https://github.com/edauterman/SafetyPin

Android Pixel 4 100 $20 SoloKeys

Linux machine

100 SoloKeys = slice of cluster that can process 1B recoveries/year

https://github.com/edauterman/SafetyPin
https://github.com/edauterman/SafetyPin

25

Implementation setup
https://github.com/edauterman/SafetyPin

Android Pixel 4 100 $20 SoloKeys

Linux machine

100 SoloKeys = slice of cluster that can process 1B recoveries/year

https://github.com/edauterman/SafetyPin
https://github.com/edauterman/SafetyPin

Overhead with resource-limited HSMs
• Recovering a backup takes 1.01s.

Client cost
• Generating a recovery ciphertext takes 0.37s.

• Client must download 2MB of HSM keys each day.

26

Evaluation summary: experimental results

Total system cost
• Supporting 1B recoveries per year costs

• $61K with SoloKeys (hardware we used), and

• $15M with high-quality HSMs.

• Cost of storing 4GB for 1B users: $600M.

27

Evaluation summary: system estimates

• Today, secure hardware is often a single point of failure.

• This doesn’t have to be the case.

• We should never settle for reduced security.

• Computational limits of HSMs are not an excuse.

28

Secure hardware doesn't need to be trusted hardware

• Today, secure hardware is often a single point of failure.

• This doesn’t have to be the case.

• We should never settle for reduced security.

• Computational limits of HSMs are not an excuse.

28

Emma Dauterman
edauterman@berkeley.edu

https://github.com/edauterman/SafetyPin

Thanks!

Secure hardware doesn't need to be trusted hardware

[BGLS] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In EUROCRYPT,
pages 416–432. Springer, 2003.  

29

References

