SafetyPin: Encrypted Backups
with Human-Memorable Secrets

Emma Dauterman (UC Berkeley),
Henry Corrigan-Gibbs (EPFL and MIT CSAIL), and
David Mazieres (Stanford)

OSDI 2020




Mobile backups today

1. User only needs to remember her screen-lock PIN.
+ PINs are easy to remember and not known to the service providetr.

- PINs have low-entropy.

2. Secure hardware prevents brute-force attacks against PIN.
+ Hardware security modules (HSMs) are resistant to physical attacks.

- HSMs are not perfect.



State-of-the-art vs. SafetyPin: security

State-of-the-art SafetyPin

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

1 compromise = Millions of backups < N/16 compromises = 0 backups

SafetyPin tolerates many HSM compromises.

3



State-of-the-art vs. SafetyPin: scalability

State-of-the-art SafetyPin

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

- — - — D T

0=

Client talks to a single HSM. Client talks to a few HSMs (e.g. 40).

SafetyPin doesn’t sacrifice scalability.

4



State-of-the-art vs. SafetyPin: fault tolerance

State-of-the-art 5 SafetyPin

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

%n ———

tr%n =— - — e —
—X== —X==
= u: = PR 5 == u: _— P

U ommms om0 om0 m Cmmm mes Oosss s N HSMS

Tolerates many failures between backups (e.g. N/64).

5



More HSMs improve security and performance

HSMs an
attacker must
compromise

HSMs in system

Recoveries
processed per

SafetyPin

State-of-the-art

second / SafetyPin
State-of-the-art

Claim: compromising more HSMs is more expensive

HSMs in system

e The cost of physical attacks scales linearly with the number of HSMs.

e Physically attacking more HSMs increases the risk of exposure.

e Some protection against software bugs with diverse HSMs.

6



Attack scenario

Service provider (e.g. Google) sets up the
system correctly.

Later, attacker wants to obtain user backups.

—
Attacker can: \/

e observe/modify network traffic,
e control the storage server, and

e adaptively compromise many HSMs.

HSMs

Storage sever

Service provider

Q)



Attack scenario

Service provider (e.g. Google) sets up the
system correctly.

Later, attacker wants to obtain user backups.

—
Attacker can: \/

e observe/modify network traffic,
e control the storage server, and

e adaptively compromise many HSMs.

HSMs

Storage sever

Service provider

)



Attack scenario

Service provider (e.g. Google) sets up the
system correctly.

Later, attacker wants to obtain user backups.

Attacker can:
e observe/modify network traffic,
e control the storage server, and

HSMs
e adaptively compromise many HSMs.

Storage sever

Service provider

)



Attack scenario

Service provider (e.g. Google) sets up the
system correctly.

Storage sever

d— ~=) — N

Later, attacker wants to obtain user backups.

Attacker can: pumg — —
* observe/modify network traffic, — 3 —9c — 95—

e control the storage server, and

e adaptively compromise many HSMs. Service provider

e
HSMs (===t (St u=ntu=?

)



Outline

1. SafetyPin design
e Overview

e Scalable rate-limiting

2. SafetyPin evaluation



SafetyPin design idea

Idea: Hide the identities of a small, fixed set of HSMs a user can recover with.
e Scalability: The user can recover with a small set of HSMSs.

e Security: Without the PIN, the attacker can’t identify the set of HSMSs.

[System parameterized to support 1B recoveries per year with 128-bit security]

10



BacKkup [simplified]
1. Select n ~ 40 HSMs using a PIN.

2. Break message into n = 40 shares m,, ..., m, such that n/2 needed to recover.

3. Encrypt a share m. to each selected HSM 1.

o~
<J

—
—

message

11



BacKkup [simplified]
1. Select n ~ 40 HSMs using a PIN.

2. Break message into n = 40 shares m,, ..., m, such that n/2 needed to recover.
3. Encrypt a share m. to each selected HSM 1.

o~
<J

T
H ser(PIN) ;/

SE— i E——

SE—— i E—— O |

message

11



BacKkup [simplified]
1. Select n ~ 40 HSMs using a PIN.

2. Break message into n = 40 shares m,, ..., m, such that n/2 needed to recover.

3. Encrypt a share m. to each selected HSM 1.

T
H . (pin) /@ ;/ .

SE— i E——

o~
<J

SE—— i E—— O |

message

11



BacKkup [simplified]
1. Select n ~ 40 HSMs using a PIN.

2. Break message into n = 40 shares m,, ..., m, such that n/2 needed to recover.

The attacker can't identify the set of HSMs without the PIN because
e client doesn't interact with HSMs, and

e ciphertexts don’t leak identities of HSMSs.

N '
Huser(pm)

F e osmemm (s

= K- =
message

11



Recovery [simpiified]

1. Retrieve ciphertexts.

2. Compute the set of n ~ 40 HSMs.

3. Send the ciphertexts to the HSMs for decryption.
4. Assemble the message from responses.

A

=
S

12



Recovery [simpiified]

1. Retrieve ciphertexts.

2. Compute the set of n ~ 40 HSMs.

3. Send the ciphertexts to the HSMs for decryption.
4. Assemble the message from responses.

o
e

o~
<J

12



Recovery [simpiified]

1. Retrieve ciphertexts.

2. Compute the set of n ~ 40 HSMs.
3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the message from responses.

H . (pin) @

Bonses
—

o~
<J

F e osmemm (s

SE—— i E—— O |

12



Recovery [simpiified]

1. Retrieve ciphertexts.

2. Compute the set of n ~ 40 HSMs.
3. Send the ciphertexts to the HSMs for decryption.
4. Assemble the message from responses.

— c

H,..,(pin) @ @/

12




Recovery [simpiified]

1. Retrieve ciphertexts.

2. Compute the set of n ~ 40 HSMs.
3. Send the ciphertexts to the HSMs for decryption.
4. Assemble the message from responses.

— c

user(pm) @

 . == == =
W e sl ol s

Q ———==

— — W u=n

12



Recovery [simpiified]

1. Retrieve ciphertexts.

2. Compute the set of n ~ 40 HSMs.
3. Send the ciphertexts to the HSMs for decryption.
4. Assemble the message from responses.

— c

 ' -u—n u:n u:n
D X" ZZZ==
m R——— °=°

message 7

12



Recovery [simpiified]

1. Retrieve ciphertexts.
2. Compute the set of n ~ 40 HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the messa

Attacker watching user recover

A

learns information about the PIN.

X
message M

12

F e osmemm (s

- o



Outline

1. SafetyPin design
e Overvew
e Scalable rate-limiting

2. SafetyPin evaluation

13



Scalable rate-limiting

Each HSM must enforce a global PIN attempt limit for every user.

Problem: Introduces a scalability bottleneck.

Tool: Public append-only log maintained by HSMSs.

[Simplified version that allows a single recovery attempt]

14



Distributed log design

Log structured as set of key-value pairs.

Core invariant: If a HSM accepts
(key, value), it will not accept (key,

value’) where value != value’.

15

Maintains log

_—
;/ )

Each HSM stores log digest



Distributed log design

Log structured as set of key-value pairs. Maintains log

_—
;/ )

Core invariant: If a HSM accepts " =

(key, value), it will not accept (key, _— = = =
value’) where value != value’. o e S S

Each HSM stores log digest

Application: scalable-rate limiting
Each key is a username, and each value commits

to a recovery attempit.




Distributed log implementation

Log structured as a binary search tree
e ordered by key (username), where

e |eaves are values (commitments to recovery attempts).

\

Alice Charlie

16



Updating the log

—)

Alice Charlie Alice Bob Charlie

Core invariant: If a HSM accepts (key, value), it

will not accept (key, value’) where value != value’.

17



Updating the log

X

Alice Charlie Alice Alice Charlie

Core invariant: If a HSM accepts (key, value), it

will not accept (key, value’) where value != value’.

18



Updating the log

Periodically, service provider

e computes a Merkle tree over the leaves, and

e sends a new Merkle root to the HSMs.

HSMs must check that the new log head extends the old log head.

19



Updating log digest at the HSMs with distributed auditing

j Data center o HSM

Old log L, new log L’ Old digest d, new digest d’

20



Updating log digest at the HSMs with distributed auditing

j Data center e HSM
Old log L, new log L’ Old digest d, new digest d’

Divide updates into /V chunks.

20



Updating log digest at the HSMs with distributed auditing

9 Data center iy HSM
Old log L, new log L’ Old digest d, new digest d’

Divide updates into /V chunks.
Request 4 &~ 128 chunks

20



Updating log digest at the HSMs with distributed auditing

9 Data center iy HSM
Old log L, new log L’ Old digest d, new digest d’

Divide updates into /V chunks.

Request A =~ 128 chunks If each requested chunk

keeps < 1 recovery
attempt per user, sign new

digest d'.

20



Updating log digest at the HSMs with distributed auditing

9 Data center iy HSM
Old log L, new log L’ Old digest d, new digest d’

Divide updates into /V chunks.

Request A =~ 128 chunks If each requested chunk

keeps < 1 recovery
attempt per user, sign new

digest d'.

Signature
4—

20



Updating log digest at the HSMs with distributed auditing

9 Data center iy HSM
Old log L, new log L’ Old digest d, new digest d’

Divide updates into /V chunks.

Request A =~ 128 chunks If each requested chunk

keeps < 1 recovery
attempt per user, sign new

digest d'.

Signature
Aggregate -
signatures from all

HSMs [BGLS03].

20



Updating log digest at the HSMs with distributed auditing

9 Data center iy HSM
Old log L, new log L’ Old digest d, new digest d’

Divide updates into /V chunks.

Request A =~ 128 chunks If each requested chunk

keeps < 1 recovery
attempt per user, sign new

Signature digest d’
Aggregate -
signatures from all Aggregate signature

HSMs [BGLS03]. i



Updating log digest at the HSMs with distributed auditing

9 Data center iy HSM
Old log L, new log L’ Old digest d, new digest d’

Divide updates into /V chunks.

Request A =~ 128 chunks If each requested chunk

keeps < 1 recovery
attempt per user, sign new

Signature digest
Aggregate -
signatures from all Aggregate signature It signature verifies, accept
HSMs [BGLSO03]. —_—

new digest d'.

20



Distributed auditing properties

e Scalability: Each HSM checks 4 &~ 128 chunks and verifies one signature.

» Security: The attacker corrupts the log undetected with probability 2712

e Transparency:
e Clients can monitor recovery attempts made on their behalf.
 External auditors can audit the log.
e An attacker that later compromises all HSMs can’t erase evidence.

21



Making SafetyPin practical for resource-limited hardware (see paper)

At recovery, the attacker sees which HSMs to compromise to obtain backup.
e Challenge: Revoking ability to decrypt requires large HSM secret keys

e ldea: Outsourced storage with secure deletion

22



Outline

e Overview
e Sealabl o lirmit

2. SafetyPin evaluation

23



Implementation setup

https://github.com/edauterman/SafetyPin & | &= &=

—

Linux machine
-

\/ ey i

Android Pixel 4 100 $20 SoloKeys

100 SoloKeys = slice of cluster that can process 1B recoveries/year

24


https://github.com/edauterman/SafetyPin
https://github.com/edauterman/SafetyPin

Implementation setup

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

https://github.com/edauterman/SafetyPin & | &= &=
_avauasic [ runcriona. l reproouceo

Linux machine

-

_

Android Pixel 4 100 $20 SoloKeys

100 SoloKeys = slice of cluster that can process 1B recoveries/year

25


https://github.com/edauterman/SafetyPin
https://github.com/edauterman/SafetyPin

Evaluation summary: experimental results

Overhead with resource-limited HSMs
 Recovering a backup takes 1.01s.

Client cost
* Generating a recovery ciphertext takes 0.37s.
e Client must download 2MB of HSM keys each day.

20



Evaluation summary: system estimates

Total system cost

e Supporting 1B recoveries per year costs
e $61K with SoloKeys (hardware we used), and
e $15M with high-quality HSMs.

e Cost of storing 4GB for 1B users: $600M.

27



Secure hardware doesn't need to be trusted hardware

* Joday, secure hardware is often a single point of failure.
 This doesn’t have to be the case.

* \We should never settle for reduced security.
e Computational limits of HSMs are not an excuse.

28



Secure hardware doesn't need to be trusted hardware

* Joday, secure hardware is often a single point of failure.
 This doesn’t have to be the case.

* \We should never settle for reduced security.
e Computational limits of HSMs are not an excuse.

Thanks!

Emma Dauterman
edauterman@berkeley.edu
https://github.com/edauterman/SafetyPin

28



References

[BGLS] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In EUROCRYPT,
pages 416-432. Springer, 2003.

29



