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Mobile backups today

1. User only needs to remember her screen-lock PIN.
+ PINs are easy to remember and not known to the service providetr.

- PINs have low-entropy.

2. Secure hardware prevents brute-force attacks against PIN.
+ Hardware security modules (HSMs) are resistant to physical attacks.

- HSMs are not perfect.



State-of-the-art vs. SafetyPin: security

State-of-the-art SafetyPin

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

1 compromise = Millions of backups < N/16 compromises = 0 backups

SafetyPin tolerates many HSM compromises.
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State-of-the-art vs. SafetyPin: scalability

State-of-the-art SafetyPin
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Client talks to a single HSM. Client talks to a few HSMs (e.g. 40).

SafetyPin doesn’t sacrifice scalability.
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State-of-the-art vs. SafetyPin: fault tolerance

State-of-the-art 5 SafetyPin
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Tolerates many failures between backups (e.g. N/64).
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More HSMs improve security and performance

HSMs an
attacker must
compromise

HSMs in system

Recoveries
processed per

SafetyPin

State-of-the-art

second / SafetyPin
State-of-the-art

Claim: compromising more HSMs is more expensive

HSMs in system

e The cost of physical attacks scales linearly with the number of HSMs.

e Physically attacking more HSMs increases the risk of exposure.

e Some protection against software bugs with diverse HSMs.
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Attack scenario

Service provider (e.g. Google) sets up the
system correctly.

Later, attacker wants to obtain user backups.

—
Attacker can: \/

e observe/modify network traffic,
e control the storage server, and

e adaptively compromise many HSMs.
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Storage sever

Service provider
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Attack scenario

Service provider (e.g. Google) sets up the
system correctly.

Storage sever
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Later, attacker wants to obtain user backups.

Attacker can: pumg — —
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e control the storage server, and

e adaptively compromise many HSMs. Service provider
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Outline

1. SafetyPin design
e Overview

e Scalable rate-limiting

2. SafetyPin evaluation



SafetyPin design idea

Idea: Hide the identities of a small, fixed set of HSMs a user can recover with.
e Scalability: The user can recover with a small set of HSMSs.

e Security: Without the PIN, the attacker can’t identify the set of HSMSs.

[System parameterized to support 1B recoveries per year with 128-bit security]
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BacKkup [simplified]
1. Select n ~ 40 HSMs using a PIN.

2. Break message into n = 40 shares m,, ..., m, such that n/2 needed to recover.

3. Encrypt a share m. to each selected HSM 1.
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BacKkup [simplified]
1. Select n ~ 40 HSMs using a PIN.

2. Break message into n = 40 shares m,, ..., m, such that n/2 needed to recover.

The attacker can't identify the set of HSMs without the PIN because
e client doesn't interact with HSMs, and

e ciphertexts don’t leak identities of HSMSs.
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Recovery [simpiified]

1. Retrieve ciphertexts.

2. Compute the set of n ~ 40 HSMs.

3. Send the ciphertexts to the HSMs for decryption.
4. Assemble the message from responses.
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Recovery [simpiified]
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Recovery [simpiified]
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Recovery [simpiified]

1. Retrieve ciphertexts.
2. Compute the set of n ~ 40 HSMs.

3. Send the ciphertexts to the HSMs for decryption.

4. Assemble the messa

Attacker watching user recover

A

learns information about the PIN.
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Outline

1. SafetyPin design
e Overvew
e Scalable rate-limiting

2. SafetyPin evaluation
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Scalable rate-limiting

Each HSM must enforce a global PIN attempt limit for every user.

Problem: Introduces a scalability bottleneck.

Tool: Public append-only log maintained by HSMSs.

[Simplified version that allows a single recovery attempt]
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Distributed log design

Log structured as set of key-value pairs.

Core invariant: If a HSM accepts
(key, value), it will not accept (key,

value’) where value != value’.
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Maintains log
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Distributed log design

Log structured as set of key-value pairs. Maintains log
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Core invariant: If a HSM accepts " =

(key, value), it will not accept (key, _— = = =
value’) where value != value’. o e S S

Each HSM stores log digest

Application: scalable-rate limiting
Each key is a username, and each value commits

to a recovery attempit.




Distributed log implementation

Log structured as a binary search tree
e ordered by key (username), where

e |eaves are values (commitments to recovery attempts).

\

Alice Charlie
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Updating the log

—)

Alice Charlie Alice Bob Charlie

Core invariant: If a HSM accepts (key, value), it

will not accept (key, value’) where value != value’.
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Updating the log

X

Alice Charlie Alice Alice Charlie

Core invariant: If a HSM accepts (key, value), it

will not accept (key, value’) where value != value’.
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Updating the log

Periodically, service provider

e computes a Merkle tree over the leaves, and

e sends a new Merkle root to the HSMs.

HSMs must check that the new log head extends the old log head.
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Updating log digest at the HSMs with distributed auditing

j Data center o HSM

Old log L, new log L’ Old digest d, new digest d’
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Updating log digest at the HSMs with distributed auditing

9 Data center iy HSM
Old log L, new log L’ Old digest d, new digest d’
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Updating log digest at the HSMs with distributed auditing

9 Data center iy HSM
Old log L, new log L’ Old digest d, new digest d’

Divide updates into /V chunks.

Request A =~ 128 chunks If each requested chunk

keeps < 1 recovery
attempt per user, sign new

Signature digest
Aggregate -
signatures from all Aggregate signature It signature verifies, accept
HSMs [BGLSO03]. —_—

new digest d'.
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Distributed auditing properties

e Scalability: Each HSM checks 4 &~ 128 chunks and verifies one signature.

» Security: The attacker corrupts the log undetected with probability 2712

e Transparency:
e Clients can monitor recovery attempts made on their behalf.
 External auditors can audit the log.
e An attacker that later compromises all HSMs can’t erase evidence.
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Making SafetyPin practical for resource-limited hardware (see paper)

At recovery, the attacker sees which HSMs to compromise to obtain backup.
e Challenge: Revoking ability to decrypt requires large HSM secret keys

e ldea: Outsourced storage with secure deletion
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Outline

e Overview
e Sealabl o lirmit

2. SafetyPin evaluation
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Implementation setup

https://github.com/edauterman/SafetyPin & | &= &=

—

Linux machine
-

\/ ey i

Android Pixel 4 100 $20 SoloKeys

100 SoloKeys = slice of cluster that can process 1B recoveries/year
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Implementation setup

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

https://github.com/edauterman/SafetyPin & | &= &=
_avauasic [ runcriona. l reproouceo

Linux machine

-

_

Android Pixel 4 100 $20 SoloKeys

100 SoloKeys = slice of cluster that can process 1B recoveries/year
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Evaluation summary: experimental results

Overhead with resource-limited HSMs
 Recovering a backup takes 1.01s.

Client cost
* Generating a recovery ciphertext takes 0.37s.
e Client must download 2MB of HSM keys each day.
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Evaluation summary: system estimates

Total system cost

e Supporting 1B recoveries per year costs
e $61K with SoloKeys (hardware we used), and
e $15M with high-quality HSMs.

e Cost of storing 4GB for 1B users: $600M.
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Secure hardware doesn't need to be trusted hardware

* Joday, secure hardware is often a single point of failure.
 This doesn’t have to be the case.

* \We should never settle for reduced security.
e Computational limits of HSMs are not an excuse.
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* Joday, secure hardware is often a single point of failure.
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Thanks!

Emma Dauterman
edauterman@berkeley.edu
https://github.com/edauterman/SafetyPin
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