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Challenge: server cannot decrypt data to search.

Find all documents 
with “apple”
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Encryption (SE) 

[SWP00], [Goh03], [CGKO11], 
[KPR12], [KP13], [CJJJ+14], 

[SPS14], [DPP18], …

ORAM-based 
solutions 

[GO96], PathORAM, ….
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contains “flu”

… and many more attacks

[IKK12], [CGPR15], [KKNO16], [LZWT14], [PW16], [GTS17], [PWLP20], ….
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Drawbacks of ORAM-based solutions

ORAM: client can read/write data at server and hide access patterns [GO96, SVSF+13].


Can implement search by building inverted index in ORAM.


+ Runtime logarithmic in index size.


- Large constants make cost prohibitive for encrypted filesystems.
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To tackle this problem, we return to the system model:


What do real encrypted filesystems require from a 
search system?



Finding DORY: Identifying a system model

Surveyed 5 companies providing end-to-end encrypted filesystems.

17

Each wanted server-side search, but didn’t deploy because concerned about:

• Search access patterns

• Performance

Keybase



Survey findings
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See paper for full quantitative and qualitative findings.


• Requirements for latency, cost, and concurrency.




Survey findings
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Two most relevant findings:


1. Linear scan for search is acceptable if search latency and cost meet 
requirements for expected workloads.


2. Distributing trust is acceptable if certain security requirements are met.

See paper for full quantitative and qualitative findings.


• Requirements for latency, cost, and concurrency.




Distributed trust

Provide security guarantees if an attacker can compromise some, 
but not all, trust domains.

19
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Distributed trust requirements
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At least one honest trust domain: attacker can't learn search access patterns.

• The other trust domains can be malicious.


Trust domain 1 Trust domain 2



Distributed trust requirements
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At least one honest trust domain: attacker can't learn search access patterns.

• The other trust domains can be malicious.


No honest trust domains: attacker can’t directly assemble search index.

• Search access patterns are not protected.

Trust domain 1 Trust domain 2



1. DORY design 

2. DORY evaluation
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Outline



System architecture
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Trust domain 1

Trust domain 2

DORYFilesystem

Clients

[Simplified; does not account for replication]

DORY

index

index
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Building DORY
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Update [simplified]

update(docID, keywords)

• Client creates a bitmap for keywords.

• Client sends server the bitmap.

• Server updates the bitmap at row docID.
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Search [simplified]
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search(keyword):
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• Server responds with corresponding column.

• Client outputs row numbers where column value is 1.
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Challenge #1: Hiding search access patterns

Attacker learns search access patterns.

• Column requested leak data about keyword searched for.
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• Uses multiple servers to hide which element the user is retrieving.

• If at least one server is honest, an attacker cannot learn the index requested.

• Requires a linear scan over the entire array.

29
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a0 a1 a2 … an

a0 a1 a2 … an
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Challenge #2: Compressing the search index
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A bitmap for every word in the English dictionary is long!


• The linear scan for search takes a long time…

Bitmap for keywords 
in doc 1
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+ Preserves search column alignment


+ Compression


+ No fixed dictionary
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Challenge #3: Encrypting the search index

Attacker should not immediately learn the search index contents.

Strawman: Encrypt every bit in Bloom filter.


• Search index size blows up by factor of .λ ≈ 128
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Challenge #3: Encrypting the search index

Solution: generate a unique one-time pad using document version number.
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Need to defend against attackers that can influence server behavior.


Strawman: MAC every bit


• Search index (and search time) blows up by factor of .λ

38

Challenge #4: Malicious attackers

[KL08]
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Need to defend against attackers that can influence server behavior.


Solution: use aggregate MACs to keep a single MAC per column.
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Other contributions (see paper)
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Other contributions (see paper)
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index index



index index

Other contributions (see paper)
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2. Extension to 
oblivious filesystems

1. Efficient user 
revocation



Other contributions (see paper)
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3. Efficient replication 
leveraging DORY’s 
cryptographic properties

index index

index index

index index

index index

1. Efficient user 
revocation

2. Extension to 
oblivious filesystems



1. DORY design


2. DORY evaluation 

44

Outline



Evaluation setup

https://github.com/ucbrise/dory 


Evaluated performance using Enron email dataset.


Two baselines:

• Plaintext search: inverted index without encryption

• ORAM baseline: inverted index in PathORAM [SVSF+13] (see paper)

45

https://github.com/ucbrise/dory
https://github.com/ucbrise/dory


Search latency
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consider client failures. If a client fails after issuing operations
at the server but before uploading the updated client ORAM
state, the next client’s access may leak access patterns (e.g. if
it searched for the same word as the previous client). To handle
client failures,we require each client to record a client “prepare”
operation at the server, and if it fails before completing, the
next client can finish the operation.
Eliminating frequency leakage. Popular keywords require
multiple ORAM blocks to store all the document identifiers
containing that keyword. We need to ensure that the number of
blocks accessed doesn’t leak the frequency of a keyword due
to known attacks [102], as DORY does not leak this frequency.
For each search, we fetch the maximum number of blocks
a keyword maps to. Similarly for each keyword we update
in a document, we fetch the maximum number of blocks a
keyword maps to and write back a single block.
Implementation. We implemented our baseline on top of an
existing open-source PathORAM implementation in Go [100].
We set the parameter Z = 4 (the ratio of dummy blocks to real
blocks in each bucket).
Evaluation on Enron email dataset. While DORY’s per-
formance relies only on the system parameters and not the
contents of the documents themselves, the performance of
both our ORAM and plaintext search baselines depends on
document contents. We evaluate these baselines using subsets
of the Enron email dataset with the same keyword extraction
techniques described above. To evaluate di�erent numbers
of documents, we take di�erent-sized subsets of the Enron
email dataset. We treat updates as adding an entire email to
the index. Because the Enron email dataset only has ⇠ 528K
emails, we do not measure the ORAM and plaintext search
baseline beyond that number of documents.

7.2 Latency
Update latency. Figure 8 shows that the update latency of
DORY is orders of magnitude faster than that of the ORAM
baseline. This holds for both the desktop and mobile clients
(Figure 9). The baseline requires a number of ORAM accesses
(each of which necessitates a round trip) linear in the number
of document keywords. In contrast, DORY simply uploads a
single encrypted Bloom filter. Update latency determines (1)
how long it takes for updates to be reflected in search results
and (2) how long the client must remain online. Neither is a
concern in DORY where updates are processed in less than
1ms, but the baseline requires clients to remain online for
hours. Note that semihonest DORY has a faster update time
than DORY because the client does not have to generate a
MAC for every bit in the Bloom filter.
Search latency. Table 7b shows the breakdown in search
latency. As the number of documents increases, the majority
of time is spent performing the linear scan at the server. This
is apparent in Figure 8, where leaky DORY’s search latency
is significantly lower than that of DORY and stays relatively
constant as the number of documents increases due to the fact
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that leaky DORY does not need to perform a linear scan.
Despite overheads incurred due to the linear scan, DORY is

orders of magnitude faster than the ORAM baseline. The MAC
overhead to protect against malicious adversaries is barely
noticeable, as semihonest DORY and DORY have almost
identical search latencies. Mobile clients incur additional
overhead in comparison to desktop clients (the mobile client
spends 5 seconds on client-side processing for 1M documents).
This overhead is below 1 second for 217 documents (Figure 9).

By increasing the degree of parallelism p and partitioning
the search index across replica groups, we can reduce the
server time by roughly a factor of p, as this time is linear in
the number of documents (Figure 8). Parallelism allows us to
reach the target latency set by the companies (Table 2).
7.3 Throughput
DORY achieves significantly higher throughput than the
ORAM baseline (Figure 10). Parallelism improves DORY’s
throughput by roughly a factor of p for larger numbers of
documents (Figure 11). Relative to other workloads, DORY
performs best under update-heavy workloads (updates require
an insertion while searches require a linear scan), and the
ORAM baseline performs best under search-heavy workloads
(searches require fewer ORAM accesses than updates).
7.4 Storage
Server state. Figure 12 shows how DORY uses substantially
less storage space at the server than the ORAM baseline and
storage space comparable to that of a plaintext inverted index.
DORY’s index continues to grow at a constant rate for large
numbers of documents while the index for plaintext search
grows more slowly, making the plaintext search index smaller
than the DORY search index for larger numbers of documents.
Client state. DORY only requires that the client store three
128-bit keys. To generate an update or decrypt a search result,
the client also needs to know the version number for each
document. To minimize bandwidth, the client can optionally
cache the latest version numbers so that it only needs to retrieve
the version numbers that changed. For 45K documents (the
highest average number of documents per user among the
companies we surveyed), storing these version numbers would
require 175.8KB. For 1M documents, storing these would
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consider client failures. If a client fails after issuing operations
at the server but before uploading the updated client ORAM
state, the next client’s access may leak access patterns (e.g. if
it searched for the same word as the previous client). To handle
client failures,we require each client to record a client “prepare”
operation at the server, and if it fails before completing, the
next client can finish the operation.
Eliminating frequency leakage. Popular keywords require
multiple ORAM blocks to store all the document identifiers
containing that keyword. We need to ensure that the number of
blocks accessed doesn’t leak the frequency of a keyword due
to known attacks [102], as DORY does not leak this frequency.
For each search, we fetch the maximum number of blocks
a keyword maps to. Similarly for each keyword we update
in a document, we fetch the maximum number of blocks a
keyword maps to and write back a single block.
Implementation. We implemented our baseline on top of an
existing open-source PathORAM implementation in Go [100].
We set the parameter Z = 4 (the ratio of dummy blocks to real
blocks in each bucket).
Evaluation on Enron email dataset. While DORY’s per-
formance relies only on the system parameters and not the
contents of the documents themselves, the performance of
both our ORAM and plaintext search baselines depends on
document contents. We evaluate these baselines using subsets
of the Enron email dataset with the same keyword extraction
techniques described above. To evaluate di�erent numbers
of documents, we take di�erent-sized subsets of the Enron
email dataset. We treat updates as adding an entire email to
the index. Because the Enron email dataset only has ⇠ 528K
emails, we do not measure the ORAM and plaintext search
baseline beyond that number of documents.

7.2 Latency
Update latency. Figure 8 shows that the update latency of
DORY is orders of magnitude faster than that of the ORAM
baseline. This holds for both the desktop and mobile clients
(Figure 9). The baseline requires a number of ORAM accesses
(each of which necessitates a round trip) linear in the number
of document keywords. In contrast, DORY simply uploads a
single encrypted Bloom filter. Update latency determines (1)
how long it takes for updates to be reflected in search results
and (2) how long the client must remain online. Neither is a
concern in DORY where updates are processed in less than
1ms, but the baseline requires clients to remain online for
hours. Note that semihonest DORY has a faster update time
than DORY because the client does not have to generate a
MAC for every bit in the Bloom filter.
Search latency. Table 7b shows the breakdown in search
latency. As the number of documents increases, the majority
of time is spent performing the linear scan at the server. This
is apparent in Figure 8, where leaky DORY’s search latency
is significantly lower than that of DORY and stays relatively
constant as the number of documents increases due to the fact
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that leaky DORY does not need to perform a linear scan.
Despite overheads incurred due to the linear scan, DORY is

orders of magnitude faster than the ORAM baseline. The MAC
overhead to protect against malicious adversaries is barely
noticeable, as semihonest DORY and DORY have almost
identical search latencies. Mobile clients incur additional
overhead in comparison to desktop clients (the mobile client
spends 5 seconds on client-side processing for 1M documents).
This overhead is below 1 second for 217 documents (Figure 9).

By increasing the degree of parallelism p and partitioning
the search index across replica groups, we can reduce the
server time by roughly a factor of p, as this time is linear in
the number of documents (Figure 8). Parallelism allows us to
reach the target latency set by the companies (Table 2).
7.3 Throughput
DORY achieves significantly higher throughput than the
ORAM baseline (Figure 10). Parallelism improves DORY’s
throughput by roughly a factor of p for larger numbers of
documents (Figure 11). Relative to other workloads, DORY
performs best under update-heavy workloads (updates require
an insertion while searches require a linear scan), and the
ORAM baseline performs best under search-heavy workloads
(searches require fewer ORAM accesses than updates).
7.4 Storage
Server state. Figure 12 shows how DORY uses substantially
less storage space at the server than the ORAM baseline and
storage space comparable to that of a plaintext inverted index.
DORY’s index continues to grow at a constant rate for large
numbers of documents while the index for plaintext search
grows more slowly, making the plaintext search index smaller
than the DORY search index for larger numbers of documents.
Client state. DORY only requires that the client store three
128-bit keys. To generate an update or decrypt a search result,
the client also needs to know the version number for each
document. To minimize bandwidth, the client can optionally
cache the latest version numbers so that it only needs to retrieve
the version numbers that changed. For 45K documents (the
highest average number of documents per user among the
companies we surveyed), storing these version numbers would
require 175.8KB. For 1M documents, storing these would
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consider client failures. If a client fails after issuing operations
at the server but before uploading the updated client ORAM
state, the next client’s access may leak access patterns (e.g. if
it searched for the same word as the previous client). To handle
client failures,we require each client to record a client “prepare”
operation at the server, and if it fails before completing, the
next client can finish the operation.
Eliminating frequency leakage. Popular keywords require
multiple ORAM blocks to store all the document identifiers
containing that keyword. We need to ensure that the number of
blocks accessed doesn’t leak the frequency of a keyword due
to known attacks [102], as DORY does not leak this frequency.
For each search, we fetch the maximum number of blocks
a keyword maps to. Similarly for each keyword we update
in a document, we fetch the maximum number of blocks a
keyword maps to and write back a single block.
Implementation. We implemented our baseline on top of an
existing open-source PathORAM implementation in Go [100].
We set the parameter Z = 4 (the ratio of dummy blocks to real
blocks in each bucket).
Evaluation on Enron email dataset. While DORY’s per-
formance relies only on the system parameters and not the
contents of the documents themselves, the performance of
both our ORAM and plaintext search baselines depends on
document contents. We evaluate these baselines using subsets
of the Enron email dataset with the same keyword extraction
techniques described above. To evaluate di�erent numbers
of documents, we take di�erent-sized subsets of the Enron
email dataset. We treat updates as adding an entire email to
the index. Because the Enron email dataset only has ⇠ 528K
emails, we do not measure the ORAM and plaintext search
baseline beyond that number of documents.

7.2 Latency
Update latency. Figure 8 shows that the update latency of
DORY is orders of magnitude faster than that of the ORAM
baseline. This holds for both the desktop and mobile clients
(Figure 9). The baseline requires a number of ORAM accesses
(each of which necessitates a round trip) linear in the number
of document keywords. In contrast, DORY simply uploads a
single encrypted Bloom filter. Update latency determines (1)
how long it takes for updates to be reflected in search results
and (2) how long the client must remain online. Neither is a
concern in DORY where updates are processed in less than
1ms, but the baseline requires clients to remain online for
hours. Note that semihonest DORY has a faster update time
than DORY because the client does not have to generate a
MAC for every bit in the Bloom filter.
Search latency. Table 7b shows the breakdown in search
latency. As the number of documents increases, the majority
of time is spent performing the linear scan at the server. This
is apparent in Figure 8, where leaky DORY’s search latency
is significantly lower than that of DORY and stays relatively
constant as the number of documents increases due to the fact
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that leaky DORY does not need to perform a linear scan.
Despite overheads incurred due to the linear scan, DORY is

orders of magnitude faster than the ORAM baseline. The MAC
overhead to protect against malicious adversaries is barely
noticeable, as semihonest DORY and DORY have almost
identical search latencies. Mobile clients incur additional
overhead in comparison to desktop clients (the mobile client
spends 5 seconds on client-side processing for 1M documents).
This overhead is below 1 second for 217 documents (Figure 9).

By increasing the degree of parallelism p and partitioning
the search index across replica groups, we can reduce the
server time by roughly a factor of p, as this time is linear in
the number of documents (Figure 8). Parallelism allows us to
reach the target latency set by the companies (Table 2).
7.3 Throughput
DORY achieves significantly higher throughput than the
ORAM baseline (Figure 10). Parallelism improves DORY’s
throughput by roughly a factor of p for larger numbers of
documents (Figure 11). Relative to other workloads, DORY
performs best under update-heavy workloads (updates require
an insertion while searches require a linear scan), and the
ORAM baseline performs best under search-heavy workloads
(searches require fewer ORAM accesses than updates).
7.4 Storage
Server state. Figure 12 shows how DORY uses substantially
less storage space at the server than the ORAM baseline and
storage space comparable to that of a plaintext inverted index.
DORY’s index continues to grow at a constant rate for large
numbers of documents while the index for plaintext search
grows more slowly, making the plaintext search index smaller
than the DORY search index for larger numbers of documents.
Client state. DORY only requires that the client store three
128-bit keys. To generate an update or decrypt a search result,
the client also needs to know the version number for each
document. To minimize bandwidth, the client can optionally
cache the latest version numbers so that it only needs to retrieve
the version numbers that changed. For 45K documents (the
highest average number of documents per user among the
companies we surveyed), storing these version numbers would
require 175.8KB. For 1M documents, storing these would
require 3.84MB. Our ORAM baseline only requires the client
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Parallelism improves search 
latency by roughly a factor 
of p (degree of parallelism).

consider client failures. If a client fails after issuing operations
at the server but before uploading the updated client ORAM
state, the next client’s access may leak access patterns (e.g. if
it searched for the same word as the previous client). To handle
client failures,we require each client to record a client “prepare”
operation at the server, and if it fails before completing, the
next client can finish the operation.
Eliminating frequency leakage. Popular keywords require
multiple ORAM blocks to store all the document identifiers
containing that keyword. We need to ensure that the number of
blocks accessed doesn’t leak the frequency of a keyword due
to known attacks [102], as DORY does not leak this frequency.
For each search, we fetch the maximum number of blocks
a keyword maps to. Similarly for each keyword we update
in a document, we fetch the maximum number of blocks a
keyword maps to and write back a single block.
Implementation. We implemented our baseline on top of an
existing open-source PathORAM implementation in Go [100].
We set the parameter Z = 4 (the ratio of dummy blocks to real
blocks in each bucket).
Evaluation on Enron email dataset. While DORY’s per-
formance relies only on the system parameters and not the
contents of the documents themselves, the performance of
both our ORAM and plaintext search baselines depends on
document contents. We evaluate these baselines using subsets
of the Enron email dataset with the same keyword extraction
techniques described above. To evaluate di�erent numbers
of documents, we take di�erent-sized subsets of the Enron
email dataset. We treat updates as adding an entire email to
the index. Because the Enron email dataset only has ⇠ 528K
emails, we do not measure the ORAM and plaintext search
baseline beyond that number of documents.

7.2 Latency
Update latency. Figure 8 shows that the update latency of
DORY is orders of magnitude faster than that of the ORAM
baseline. This holds for both the desktop and mobile clients
(Figure 9). The baseline requires a number of ORAM accesses
(each of which necessitates a round trip) linear in the number
of document keywords. In contrast, DORY simply uploads a
single encrypted Bloom filter. Update latency determines (1)
how long it takes for updates to be reflected in search results
and (2) how long the client must remain online. Neither is a
concern in DORY where updates are processed in less than
1ms, but the baseline requires clients to remain online for
hours. Note that semihonest DORY has a faster update time
than DORY because the client does not have to generate a
MAC for every bit in the Bloom filter.
Search latency. Table 7b shows the breakdown in search
latency. As the number of documents increases, the majority
of time is spent performing the linear scan at the server. This
is apparent in Figure 8, where leaky DORY’s search latency
is significantly lower than that of DORY and stays relatively
constant as the number of documents increases due to the fact
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that leaky DORY does not need to perform a linear scan.
Despite overheads incurred due to the linear scan, DORY is

orders of magnitude faster than the ORAM baseline. The MAC
overhead to protect against malicious adversaries is barely
noticeable, as semihonest DORY and DORY have almost
identical search latencies. Mobile clients incur additional
overhead in comparison to desktop clients (the mobile client
spends 5 seconds on client-side processing for 1M documents).
This overhead is below 1 second for 217 documents (Figure 9).

By increasing the degree of parallelism p and partitioning
the search index across replica groups, we can reduce the
server time by roughly a factor of p, as this time is linear in
the number of documents (Figure 8). Parallelism allows us to
reach the target latency set by the companies (Table 2).
7.3 Throughput
DORY achieves significantly higher throughput than the
ORAM baseline (Figure 10). Parallelism improves DORY’s
throughput by roughly a factor of p for larger numbers of
documents (Figure 11). Relative to other workloads, DORY
performs best under update-heavy workloads (updates require
an insertion while searches require a linear scan), and the
ORAM baseline performs best under search-heavy workloads
(searches require fewer ORAM accesses than updates).
7.4 Storage
Server state. Figure 12 shows how DORY uses substantially
less storage space at the server than the ORAM baseline and
storage space comparable to that of a plaintext inverted index.
DORY’s index continues to grow at a constant rate for large
numbers of documents while the index for plaintext search
grows more slowly, making the plaintext search index smaller
than the DORY search index for larger numbers of documents.
Client state. DORY only requires that the client store three
128-bit keys. To generate an update or decrypt a search result,
the client also needs to know the version number for each
document. To minimize bandwidth, the client can optionally
cache the latest version numbers so that it only needs to retrieve
the version numbers that changed. For 45K documents (the
highest average number of documents per user among the
companies we surveyed), storing these version numbers would
require 175.8KB. For 1M documents, storing these would
require 3.84MB. Our ORAM baseline only requires the client
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consider client failures. If a client fails after issuing operations
at the server but before uploading the updated client ORAM
state, the next client’s access may leak access patterns (e.g. if
it searched for the same word as the previous client). To handle
client failures,we require each client to record a client “prepare”
operation at the server, and if it fails before completing, the
next client can finish the operation.
Eliminating frequency leakage. Popular keywords require
multiple ORAM blocks to store all the document identifiers
containing that keyword. We need to ensure that the number of
blocks accessed doesn’t leak the frequency of a keyword due
to known attacks [102], as DORY does not leak this frequency.
For each search, we fetch the maximum number of blocks
a keyword maps to. Similarly for each keyword we update
in a document, we fetch the maximum number of blocks a
keyword maps to and write back a single block.
Implementation. We implemented our baseline on top of an
existing open-source PathORAM implementation in Go [100].
We set the parameter Z = 4 (the ratio of dummy blocks to real
blocks in each bucket).
Evaluation on Enron email dataset. While DORY’s per-
formance relies only on the system parameters and not the
contents of the documents themselves, the performance of
both our ORAM and plaintext search baselines depends on
document contents. We evaluate these baselines using subsets
of the Enron email dataset with the same keyword extraction
techniques described above. To evaluate di�erent numbers
of documents, we take di�erent-sized subsets of the Enron
email dataset. We treat updates as adding an entire email to
the index. Because the Enron email dataset only has ⇠ 528K
emails, we do not measure the ORAM and plaintext search
baseline beyond that number of documents.

7.2 Latency
Update latency. Figure 8 shows that the update latency of
DORY is orders of magnitude faster than that of the ORAM
baseline. This holds for both the desktop and mobile clients
(Figure 9). The baseline requires a number of ORAM accesses
(each of which necessitates a round trip) linear in the number
of document keywords. In contrast, DORY simply uploads a
single encrypted Bloom filter. Update latency determines (1)
how long it takes for updates to be reflected in search results
and (2) how long the client must remain online. Neither is a
concern in DORY where updates are processed in less than
1ms, but the baseline requires clients to remain online for
hours. Note that semihonest DORY has a faster update time
than DORY because the client does not have to generate a
MAC for every bit in the Bloom filter.
Search latency. Table 7b shows the breakdown in search
latency. As the number of documents increases, the majority
of time is spent performing the linear scan at the server. This
is apparent in Figure 8, where leaky DORY’s search latency
is significantly lower than that of DORY and stays relatively
constant as the number of documents increases due to the fact
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that leaky DORY does not need to perform a linear scan.
Despite overheads incurred due to the linear scan, DORY is

orders of magnitude faster than the ORAM baseline. The MAC
overhead to protect against malicious adversaries is barely
noticeable, as semihonest DORY and DORY have almost
identical search latencies. Mobile clients incur additional
overhead in comparison to desktop clients (the mobile client
spends 5 seconds on client-side processing for 1M documents).
This overhead is below 1 second for 217 documents (Figure 9).

By increasing the degree of parallelism p and partitioning
the search index across replica groups, we can reduce the
server time by roughly a factor of p, as this time is linear in
the number of documents (Figure 8). Parallelism allows us to
reach the target latency set by the companies (Table 2).

7.3 Throughput
DORY achieves significantly higher throughput than the
ORAM baseline (Figure 10). Parallelism improves DORY’s
throughput by roughly a factor of p for larger numbers of
documents (Figure 11). Relative to other workloads, DORY
performs best under update-heavy workloads (updates require
an insertion while searches require a linear scan), and the
ORAM baseline performs best under search-heavy workloads
(searches require fewer ORAM accesses than updates).

7.4 Storage
Server state. Figure 12 shows how DORY uses substantially
less storage space at the server than the ORAM baseline and
storage space comparable to that of a plaintext inverted index.
DORY’s index continues to grow at a constant rate for large
numbers of documents while the index for plaintext search
grows more slowly, making the plaintext search index smaller
than the DORY search index for larger numbers of documents.
Client state. DORY only requires that the client store three
128-bit keys. To generate an update or decrypt a search result,
the client also needs to know the version number for each
document. To minimize bandwidth, the client can optionally
cache the latest version numbers so that it only needs to retrieve
the version numbers that changed. For 45K documents (the
highest average number of documents per user among the
companies we surveyed), storing these version numbers would
require 175.8KB. For 1M documents, storing these would
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consider client failures. If a client fails after issuing operations
at the server but before uploading the updated client ORAM
state, the next client’s access may leak access patterns (e.g. if
it searched for the same word as the previous client). To handle
client failures,we require each client to record a client “prepare”
operation at the server, and if it fails before completing, the
next client can finish the operation.
Eliminating frequency leakage. Popular keywords require
multiple ORAM blocks to store all the document identifiers
containing that keyword. We need to ensure that the number of
blocks accessed doesn’t leak the frequency of a keyword due
to known attacks [102], as DORY does not leak this frequency.
For each search, we fetch the maximum number of blocks
a keyword maps to. Similarly for each keyword we update
in a document, we fetch the maximum number of blocks a
keyword maps to and write back a single block.
Implementation. We implemented our baseline on top of an
existing open-source PathORAM implementation in Go [100].
We set the parameter Z = 4 (the ratio of dummy blocks to real
blocks in each bucket).
Evaluation on Enron email dataset. While DORY’s per-
formance relies only on the system parameters and not the
contents of the documents themselves, the performance of
both our ORAM and plaintext search baselines depends on
document contents. We evaluate these baselines using subsets
of the Enron email dataset with the same keyword extraction
techniques described above. To evaluate di�erent numbers
of documents, we take di�erent-sized subsets of the Enron
email dataset. We treat updates as adding an entire email to
the index. Because the Enron email dataset only has ⇠ 528K
emails, we do not measure the ORAM and plaintext search
baseline beyond that number of documents.

7.2 Latency
Update latency. Figure 8 shows that the update latency of
DORY is orders of magnitude faster than that of the ORAM
baseline. This holds for both the desktop and mobile clients
(Figure 9). The baseline requires a number of ORAM accesses
(each of which necessitates a round trip) linear in the number
of document keywords. In contrast, DORY simply uploads a
single encrypted Bloom filter. Update latency determines (1)
how long it takes for updates to be reflected in search results
and (2) how long the client must remain online. Neither is a
concern in DORY where updates are processed in less than
1ms, but the baseline requires clients to remain online for
hours. Note that semihonest DORY has a faster update time
than DORY because the client does not have to generate a
MAC for every bit in the Bloom filter.
Search latency. Table 7b shows the breakdown in search
latency. As the number of documents increases, the majority
of time is spent performing the linear scan at the server. This
is apparent in Figure 8, where leaky DORY’s search latency
is significantly lower than that of DORY and stays relatively
constant as the number of documents increases due to the fact
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that leaky DORY does not need to perform a linear scan.
Despite overheads incurred due to the linear scan, DORY is

orders of magnitude faster than the ORAM baseline. The MAC
overhead to protect against malicious adversaries is barely
noticeable, as semihonest DORY and DORY have almost
identical search latencies. Mobile clients incur additional
overhead in comparison to desktop clients (the mobile client
spends 5 seconds on client-side processing for 1M documents).
This overhead is below 1 second for 217 documents (Figure 9).

By increasing the degree of parallelism p and partitioning
the search index across replica groups, we can reduce the
server time by roughly a factor of p, as this time is linear in
the number of documents (Figure 8). Parallelism allows us to
reach the target latency set by the companies (Table 2).

7.3 Throughput
DORY achieves significantly higher throughput than the
ORAM baseline (Figure 10). Parallelism improves DORY’s
throughput by roughly a factor of p for larger numbers of
documents (Figure 11). Relative to other workloads, DORY
performs best under update-heavy workloads (updates require
an insertion while searches require a linear scan), and the
ORAM baseline performs best under search-heavy workloads
(searches require fewer ORAM accesses than updates).

7.4 Storage
Server state. Figure 12 shows how DORY uses substantially
less storage space at the server than the ORAM baseline and
storage space comparable to that of a plaintext inverted index.
DORY’s index continues to grow at a constant rate for large
numbers of documents while the index for plaintext search
grows more slowly, making the plaintext search index smaller
than the DORY search index for larger numbers of documents.
Client state. DORY only requires that the client store three
128-bit keys. To generate an update or decrypt a search result,
the client also needs to know the version number for each
document. To minimize bandwidth, the client can optionally
cache the latest version numbers so that it only needs to retrieve
the version numbers that changed. For 45K documents (the
highest average number of documents per user among the
companies we surveyed), storing these version numbers would
require 175.8KB. For 1M documents, storing these would
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 Conclusion

• DORY is an efficient search system that hides search access patterns.


• By re-examining the system model, DORY reconciles the tension 
between efficiency and search access patterns.


• Search should not be a barrier to adoption of end-to-end encrypted 
systems.
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