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Data Lookup

Data lookup is important in systems

How do we perform a lookup given an array of data?
Linear search

What if the array is sorted?
Binary search

What if the data is huge?
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Data Structures to Facilitate Lookups

Assume sorted data

Traditional solution: build specific data structures for lookups
B-Tree, for example

Record the position of the data

What if we know the data beforehand? 3 7
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Bring Learning to Indexing

Lookups can be faster if we know the distribution
The model f(•) learns the distribution

Leaned Indexes

Time Complexity – O(1) for lookups

Space Complexity – O(1)
Only 2 floating points – slope + intercept
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Key

f(x) = 0.5x - 50 x = 100 -> f(x) = 0

Kraska et al. The Case for Learned Index Structures. 2018



Challenges to Learned Indexes

How to efficiently support insertions/updates?
Data distribution changed

Need re-training, or lowered model accuracy

How to integrate into production systems?
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Bourbon

Bourbon
A Learned index for LSM-trees

Built into production system (WiscKey)

Handle writes easily

LSM-tree fits learned indexes well
Immutable SSTables with no in-place updates

Learning guidelines
How and when to learn the SSTables

Cost-Benefit Analyzer
Predict if a learning is beneficial during runtime

Performance improvement
1.23x – 1.78x for read-only and read-heavy workloads

~1.1x for write-heavy workloads



LevelDB

Key-value store based on LSM
2 in-memory tables

7 levels of on-disk SSTables (files)

Update/Insertion procedure
Buffered in MemTables

Merging compaction

From upper to lower levels

No in-place updates to SSTables

Lookup procedure
From upper to lower levels

Positive/Negative internal lookups

…
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Learning Guidelines

Learning at SSTable granularity
No need to update models

Models keep a fixed accuracy

Factors to consider before learning:
1. Lifetime of SSTables

How long a model can be useful

2. Number of Lookups into SSTables
How often a model can be useful

L0 

L1

L2 …



Learning Guidelines

1. Lifetime of SSTables
How long a model can be useful

Experimental results
Under 15Kops/s and 50% writes
Average lifetime of L0 tables: 10 seconds
Average lifetime of L4 tables: 1 hour
A few very short-lived tables: < 1 second

Learning guideline 1: Favor lower level tables
Lower level files live longer

Learning guideline 2: Wait shortly before learning
Avoid learning extremely short-lived tables
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Learning Guidelines

2. Number of Lookups into SSTables
How often a model can be useful

Affected by various factors
Depending on workload distribution, load order, etc.

Higher level files may serve more internal lookups

Learning guideline 3: Do not neglect higher level tables
Models for them may be more often used

Learning guideline 4: Be workload- and data-aware
Number of internal lookups affected by various factors
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Learning Algorithm: Greedy-PLR

Greedy Piecewise Linear Regression
From Dataset 𝐷

Multiple linear segments 𝑓 ⋅

∀ 𝑥, 𝑦 ∈ 𝐷, 𝑓 𝑥 − 𝑦 < 𝑒𝑟𝑟𝑜𝑟

𝑒𝑟𝑟𝑜𝑟 is specified beforehand

In bourbon, we set 𝑒𝑟𝑟𝑜𝑟 = 8

Train complexity: O(n)
Typically ~40ms

Inference complexity: O(log #seg) 
Typically <1μs

Xie et al. Maximum error-bounded piecewise linear representation for online stream approximation. 2014



Bourbon Design

Bourbon: Build upon WiscKey
WiscKey: key-value separation built upon LevelDB

(Key, value_addr) pair in the LSM-tree

A separate value log

Why WiscKey?
Help handle large and variable sized values

Constant-sized KV pairs in the LSM-tree

Prediction much easier
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Bourbon Design

Find File
Load

Index Block

Model

Lookup

Search

Index Block

Load & Search

Chunk

Load & Search

Data block

Read Value

SSTable IB DB DB DB … DB
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WiscKey (Baseline) path

~4μs

Bourbon (model) path

2~3μs



Cost-Benefit Analyzer

Goal: Minimize total CPU time
A balance between always-learn and no-learn

Estimated benefit

Estimated cost
Learn!

Baseline path lookup time

Model path lookup time

Number of lookups served

Table size



Effectiveness of Cost-Benefit Analyzer

Learn most/all new tables at low write percentages
• Reach a better foreground latency than offline learning

Limit learning at high write percentages
• Reduce learning time and have a good foreground latency

Minimal total CPU cost in all scenarios



Evaluation

Various micro and macro benchmarks
• Dataset

• Load order

• Request distribution

• Range queries

• YCSB

• SOSD

• On-disk database

Database resides in memory
Reduce data access time

Better show benefits in indexing time

Come back to this condition later



Can Bourbon adapt to different datasets?

Micro benchmark: datasets
4 synthetic datasets: linear, normal, seg1%, and seg10%

2 real-world datasets: AmazonReviews and OpenStreetMapNY

Uniform random read-only workloads

Bourbon performs better with lower number of segments
Reach 1.6x gain for two real-world datasets with 1% segments

Dataset #Data #Seg %Seg

Linear 64M 900 0%

Seg1% 64M 640K 1%

Normal 64M 705K 1.1%

Seg10% 64M 6.4M 10%

AR 33M 129K 0.39%

OSM 22M 295K 1.3%



Performance with different request distributions?

Micro benchmark: request distribution
Read-only workloads

Sequential, zipfian, hotspot, exponential, uniform, and latest

Bourbon improves performance by ~1.6x
Regardless of request distributions



Can Bourbon perform well on real benchmarks?

Macro benchmark: YCSB
6 core workloads on YCSB default dataset

Bourbon Improves reads without affecting writes

Bourbon’s gain holds on real benchmarks

Bourbon improves reads without affecting writes



Is Bourbon beneficial when data is on storage?

Performance on fast storage
Data resides on an Intel Optane SSD

5 YCSB core workloads on YCSB default dataset

Bourbon can still offer benefits when data is on storage
Will be better with emerging storage technologies



Conclusion

Bourbon
Integrates learned indexes into a production LSM system

Beneficial on various workloads

Learning guidelines on how and when to learn

Cost-Benefit Analyzer on whether a learning is worthwhile

How will ML change computer system mechanisms?
Not just policies

Bourbon improves the lookup process with learned indexes

What other mechanisms can ML replace or improve?

Careful study and deep understanding are required



Thank You for Watching!

The ADvanced Systems Laboratory (ADSL)
https://research.cs.wisc.edu/wind/

Microsoft Gray Systems Laboratory
https://azuredata.microsoft.com/
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