Theseus: an experiment
in OS Structure and
State Management

Kevin Boos* Namitha Liyanage®™ Ramlaljaz® Lin Zhong’
Presenter

*Rice University "Yale University
Nov 4, 2020

Key Hypothesis

Fundamentally redesigning an OS to avoid state spill
will make it easier to evolve and recover from faults.

How much can language and compilers help?

Initially motivated by study of state spill

e State spill: the state of a software component undergoes a

lasting change a result of interacting with another component
o Future correctness depends on those changed states

e State spill is a root cause of challenges in computing goals
o Fault isolation, fault tolerance/recovery

Live update, hot swapping

Maintainability

Process migration

Scalability

O O O O

Simple example of state spill

__
App A A

App B ‘

clients

® |

-

-

OS Service \

7

9

server

Missing or
inconsistent states

Causes hard crash or
undefined behavior

Motivation beyond state spill

e Modern languages can be leveraged for more than safety
o Attracted to Rust due to ownership model & compile-time safety
o Goal: statically ensure certain correctness invariants for OS behaviors

e Evolvability and availability are needed, even with redundancy

o Embedded systems software must update w/o downtime or loss of context
o Datacenter network switches still suffer outages from software failures and
maintenance updates

Theseus in a nutshell

1. Establishes OS structure of many tiny components
o All components must have runtime-persistent bounds

2. Adopt intralingual OS design to empower Rust compiler
o Leverage language strengths to go beyond safety
o Shift responsibility of resource bookkeeping from OS into compiler

3. Avoids state spill or mitigates its effects
e Designed with evolvability and availability in mind

e ~38K lines of Rust code from scratch, 900 lines of assembly

Theseus design principles

P1. Require runtime-persistent bounds for all components
P2. Maximize the power of the language and compiler

P3. Avoid state spill

OS structure of many tiny components

e Each componentis a cell
o Software-defined unit of modularity

e Cells are based on crates
o Rust’s project container
o Source code + dependency manifest
o Elementary unit of compilation

P1. Runtime-persistent cell bounds

e All cells are dynamically loaded at runtime CellNamespace
symbol_map: { ... }
o Not just drivers or kernel extensions :
LoadedCell
name: my_driver
{mem:{D ID}}

LoadedCell
name: my_crate

mem:{ (] }

e Allows Theseus to track cell bounds

. . . A ToxtSec DataSec 4 TextSec
o Location & size in memory (MP) came: et i il

vaddr: FE54.. vaddr: FEBC.. vaddr: FF14..
> < - » s P

o Bidirectional dependencies

D MappedPages (MP) ‘ LoadedSection D “depends on

e Single address space & single privilege level
o All components across whole system are observable as cells
o Single cell swapping mechanism is uniformly applicable

o Jointly evolve cells from multiple system layers (app, kernel) safely o
D

P2: Maximally leverage/empower compiler

e Take advantage of Rust’s powerful abilities

o Rust compiler checks many built-in safety invariants
m e.g., memory safety for objects on stack & heap
o Extend compiler-checked invariants to all resources

e /ntralingual design requires:
1. Matching compiler’s expected execution model
2. Implementing OS semantics fully within strong, static type system

10

Matching compiler’s execution model

1. Single address space environment

o Single set of visible virtual addresses
o Bijective 1-to-1 mapping from virtual to physical address

2. Single privilege level
o Only one world of execution (ring O)

3. Single allocator instance
o Rust expects one global allocator to serve all alloc requests
o Theseus implements multiple per-core heaps
within the single GlobalAlloc instance

1

Intralingual OS implementation in brief

(0) Use & prioritize safe code as much as possible

1. ldentify invariants to prevent unsafe, incorrect resource usage
o Express semantics using existing language-level mechanisms
m Enables compiler to subsume OS’s resource-specific invariants

2. Preserve language-level context with lossless interfaces

o e.g., type info, lifetime, ownership/borrowed status
o Statically ensure provenance of language context

e (o beyond safety: prevent resource leakage

o Theseus implements custom unwinder, which ensures cleanup
12

Ensuing benefits of intralingual design

Reduces state spill

Compiler takes over OS need not maintain

resource bookkeeping bookkeeping states
Strengthens isolation

Approaches end-to-end safety

Removes gaps in from apps to kernel core

compiler’s code

understanding Shifts semantic runtime errors

into compile-time errors

P3: Addressing state spill

Key technique: opaque exportation

o Corollary is stateless communication (a la REST)
Avoid known spillful abstractions, e.g., handles
Shared states via joint ownership

Permit soft states
o Cached values that do not hinder to evolution or availability

Accommodate hardware-required states

14

Opaque exportation via intralinguality

Client state ‘

config(c)

Server state

———————————————

———————————————

———————————————

Shift responsibility of holding
progress state from server to client

Only possible because:

1. Server can safely relinquish its state to
client, who can’t arbitrarily introspect
into or modify server-private state
m Viatype & memory safety

2. System can revoke client states to

reclaim them on behalf of the server
m Via unwinder

15

Example: memory management

e Problems with conventional memory management:

o Map, remap, unmap cause state spill into mm entity
m Client-side handles (virtual addresses) to server-side VMA entries
o Unsafety due to semantic gap between OS-level and language-level
understanding of memory usage
o Extralingual sharing: mapping multiple pages to the same frame

e Solution: the MappedPages abstraction

16

MappedPages code overview

pub struct MappedPages {
pages: AllocatedPages,
frames: AllocatedFrames,

flags: EntryFlags,

e Virtually contiguous
memory region

pub fn map(pages: AllocatedPages,
frames: AllocatedFrames,
flags: EntryFlags,

) —> Result<MappedPages> {

for (page, frame) in pages.iter().zip(frames.iter()) {

let mut pg tbl entry = pg tblwalk to(page, flags)?

.get pte mut(page.pte offset());
pg tbl entry.set(frame.start address(),

flags) ?;
}

Ok (MappedPages { pages, frames, flags })

e (Cannot create invalid or non-bijective mapping

O

map () accepts only owned AllocatedPages/Frames, consuming them

17
D

Ensuring safe access to memory regions

impl Drop for MappedPages | e Guaranteed mapped while held
fn drop(&mut self) {
// unmap: clear page table entry, inval TLB. O AUtO-Unmapped On/yupon drop
// AllocatedPages/Frames are auto-dropped e} Prevents use after free, double free

// and deallocated here.

} .
impl MappedPages { e Can only borrow memory region
pub fn as type<'m, T>(&'m self, offset: usize)

o Overlay sized type atop regions
-> Result<&'m T> { y yp p g

1f offset + size of::<T>() > self.size() { o Forbids tak|ng OWﬂeI’Ship Of
return Error::OutOfBounds; overlaid struct, a lossy action

}

let t: &'m T = unsafe { o Others not shown: as slice (),
&* ((self.pages.start address() + offset) }; as_type mut (), as func()

Ok (t)

Safely using MappedPages for MMIO

struct HpetRegisters {
pub capabilities and id: ReadOnly<i64>,
_padding: wed, ...1,

pub main counter: Volatile«64>,

fn main() -> Result<()> {
let frames = get hpet frames()?;

let pages = allocate pages(frames.count()) ?;

let mp pgs = map(pages, frames, flags, pg tbl)?;
let hpet: &HpetRegisters = mp pgsas type(0)?;

let ticks = hpet regs.main counterread();
print! ("HPET ticks: {}", ticks);

// "mp_pgs’ auto-dropped here

Owned directly by app/task

o No state spill into mm subsystem

Unwinder prevents leakage

o Ensures mp_pgs is unmapped,
even upon panic

19

MappedPages compiler-checked invariants

1. Virtual-to-physical mapping must be bijective (1to 1)
o Prevents extralingual sharing

2. Memory is not accessible beyond region bounds

3. Memory region must be unmapped exactly once
o After no more references to it exist
o Must not be accessible after being unmapped

4. Memory can only be mutated or executed if mapped as such
o Avoids page protection violations

MappedPages statically prevents invalid page faults

Compiler-checked Task invariants

—

Spawning a new task must not violate safety
Accessing task states must always be safe and deadlock-free

Task states must be fully released in all execution paths

H W N

All memory reachable from a task must outlive that task

see paper for details

21

Realizing live evolution via cell swapping

Existing CelINS |

22

Live evolution via cell swapping

Existing CelINS

(s)(s(s)fs] [slfs slls] [sifs]fs

i. Load all new cells into iii. Redirect (re-link) dependent
empty CellNamespace old cells to use new cells
ii. Verify dependencies iv. Remove old cells, clean up

23
D

Theseus facilitates evolutionary mechanisms

e Runtime-persistent bounds simplify cell swapping
o Dynamic loader ensures non-overlapping memory bounds
o No size or location restrictions, no interleaving = cleanly removable cells

e Spill-free design of cells results in:

o Less (faster) dependency rewriting and state transfer
o More safe update points

e Cell metadata accelerates cell swapping

o Dependency verification = quick search of symbol map
o Only scan stacks of tasks whose entry functions can reach old crates

24

Realizing availability via fault recovery

e Many classes of faults prevented by Rust safety & intralinguality
o Focus on transient hardware-induced faults beneath the language level

e (Cascading approach to fault recovery

Stage 1 Tolerate fault: clean up task via unwinding ncreasingly
Stage 2: Restart task: respawn new instance intrusive
Stage 3: Reload cells: replace corrupted cells

e Recovery mechanisms have few dependencies
o Works in core OS contexts, such as CPU exception handlers
o Microkernels need userspace, context switches, interrupts, IPC -
D

Brief evaluation overview

® Live evolution case studies

e F[ault recovery experiments

o Injecting faults into Theseus
o Comparison with MINIX 3 microkernel

e Cost of intralingual and spill-free design

e Microbenchmark comparison with Linux

o Negligible overhead of runtime-persistent bounds (dynamic linking)
o |PC fastpath is competitive with microkernel and safe-language OSes

26

Live Evolution: sync =» async “IPC”

e Theseus advances evolution beyond monolithic/microkernel OSes

o Safe, joint evolution of user-kernel interfaces and functionality
o Evolution of core components that must exist in microkernel

e Do microkernels need to change? Change histories say yes

o IPC is noteworthy change

Load new cellules 1 ...

Theseus suffers no

sync = async ITC

19.5 ms

Verify dependencies

Rewrite relocations ¢

state loss evolving State transfer |

Update dependencies
Cellule/symbol cleanup

yi

1/

18

19

20 ms

27

General fault recovery: 69% success

e Injected 800K faults, 665 manifested

o Workloads include graphical rendering,
task spawning, FS access, ITC channels

o Targeted the working set of task stack,
heap, cell sections in memory

e Most failures due to lack of

asynchronous unwinding
o Point of failure (instr ptr) isn’t covered
by compiler’s unwinding table

Successful Recovery | 461
Restart task 50
Reload cell 411

Failed Recovery 204
Incomplete unwinding 94
Hung task 30
Failed cell replacement 18
Unwinder failure 62

28

4 KiB page

Time (ns),

Cost of intralinguality & state spill freedom

MappedPages performs better

2500

2000

1500

1000

500

1 with state spill (VMAS)

XA state spill free (MappedPages)

Map Unmap

= A]

NONCNCONCNCNA

XX X XX K X X DG
ARARARRNRARARANRNA

bbbk ||

Yoo Y05 Yoy Y05 Yoo Y05 Yoy %os
total number of mappings

Safe heap: up to
due to allocation bookkeeping

Heap impl. threadtest shbench

unsafe 20.27 £0.009 | 3.99 £ 0.001
partially safe | 20.52 £ 0.010 | 4.54 + 0.002
safe 24.82 £ 0.006 | 4.89 £ 0.002

times in seconds (s)

29

Limitations at a glance

e Unsafety is a necessary evil = detect infectious unsafe code

e Reliance on safe language
o Must trust Rust compiler and core/alloc libraries

e Intralinguality not always possible
o Nondeterministic runtime conditions, incorporating legacy code

e Tension between state spill freedom and legacy compatibility
o Make decision on per-subsystem basis, e.g., prefer legacy FS

30

Conclusion: Theseus design recap

1. Structure of many tiny cells
o Dynamic loading/linking = runtime-persistent bounds for all

2. Empower the language through intralinguality
o Beyond safety: subsume OS correctness invariants into compiler checks
o Shift resource bookkeeping duties into compiler, prevent leakage

3. Avoid state spill

-+ Designed to facilitate evolvability and availability

31

Thanks -- contact us for morel!

the Ship of Theseus

O github.com/theseus-os/Theseus Our namesake:

Kevin Boos Namitha Liyanage Ramla ljaz Lin Zhong
kevinaboos@gmail.com namitha.liyanage@yale.edu ramla.ijjaz@rice.edu lin.zhong@yale.edu

32

https://github.com/theseus-os/Theseus
mailto:kevinaboos@gmail.com
mailto:namitha.liyanage@yale.edu
mailto:ramla.ijaz@rice.edu
mailto:lin.zhong@yale.edu

