PipeSwitch: Fast Pipelined Context Switching for Deep Learning Applications

Zhihao Bai, Zhen Zhang, Yibo Zhu, Xin Jin

Deep learning powers intelligent applications in many domains

Training and inference

High throughput

Low latency

GPUs clusters for DL workloads

Separate clusters for training and inference

Utilization of GPU clusters is low

Context switching overhead is high

Context switching overhead is high

Latency: 6s

Drawbacks of existing solutions

- NVIDIA MPS
 - High overhead due to contention
- Salus[MLSys'20]
 - Requires all the models to be preloaded into the GPU memory

Infer

Goal: fast context switching

 Enable GPU-efficient multiplexing of multiple DL apps with fine-grained time-sharing

Infer

 Achieve millisecond-scale context switching latencies and high throughput

PipeSwitch overview: execution

- Stop the current task and prepare for the next task.
- Execute the task with pipelined model transmission.
- Clean the environment for the previous task.

Sources of context switching overhead

Model transmission

Memory allocation

Task initialization

Task cleaning

Memory allocation

Task initialization

Task cleaning

DL models have layered structures

Input Layer-1 Layer-2 Forward Backward Propagation Propagation ... Layer-N Output

Sequential model transmission and execution

PCle

Multiple calls to PCIe;
Synchronize transmission and execution.

GPU

How to reduce the overhead?

Unified memory management

How to reduce the overhead?

Implementation

- Testbed: AWS EC2
 - p3.2xlarge: PCle 3.0x16, NVIDIA Tesla V100 GPU
 - g4dn.2xlarge: PCIe 3.0x8, NVIDIA Tesla T4 GPU
- Software
 - CUDA 10.1
 - PyTorch 1.3.0
- Models
 - ResNet-152
 - Inception-v3
 - BERT-base

Evaluation

- Can PipeSwitch satisfy SLOs?
- Can PipeSwitch provide high utilization?
- How well do the design choices of PipeSwitch work?

Evaluation

- Can PipeSwitch satisfy SLOs?
- Can PipeSwitch provide high utilization?
- How well do the design choices of PipeSwitch work?

NVIDIA Tesla V100

NVIDIA Tesla V100

Scheduling cycles

Summary

- GPU clusters for DL applications suffer from low utilization
 - Limited share between training and inference workloads
- PipeSwitch introduces pipelined context switching
 - Enable GPU-efficient multiplexing of DL apps with fine-grained time-sharing
 - Achieve millisecond-scale context switching latencies and high throughput

Thank you! zbai1@jhu.edu