Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Pradeep Ambati^{*}, Íñigo Goiri, Felipe Frujeri, Alper Gun^{*}, Ke Wang^{*}, Brian Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura, and Ricardo Bianchini

*Ambati is with UMass Amherst, Gun and Wang are now with Google

Public Cloud Platforms

- Cloud Platforms offer compute resources as virtual machines (VM)
 - Users can keep the VMs from seconds to years and request more VMs
 - Cloud platforms provide illusion of infinite scalability
 - To allow user growth, handle hardware failures etc.

Public Cloud Platforms

- Cloud Platforms offer compute resources as virtual machines (VM)
 - Users can keep the VMs from seconds to years and request more VMs
 - Cloud platforms provide illusion of infinite scalability
 - To allow user growth, handle hardware failures etc.

- **Unallocated resources** leveraged as spot VMs with **relaxed SLOs**
 - Spot VMs can be **revoked** anytime for regular-priority VMs
 - Cost ~50-90% less than regular-priority VMs

But spot VMs are **fixed size** VMs and ...

• .			
apacity			
	 	 	. /]

- **Unallocated resources** leveraged as spot VMs with **relaxed SLOs**
 - Spot VMs can be **revoked** anytime for regular-priority VMs
 - Cost ~50-90% less than regular-priority VMs

But spot VMs are **fixed size** VMs and ...

Large Spot VM allocated

- Unallocated resources leveraged as spot VMs with relaxed SLOs
 - Spot VMs can be **revoked** anytime for regular-priority VMs
 - Cost ~50-90% less than regular-priority VMs

But spot VMs are **fixed size** VMs and ...

- Unallocated resources leveraged as spot VMs with relaxed SLOs
 - Spot VMs can be **revoked** anytime for regular-priority VMs
 - Cost ~50-90% less than regular-priority VMs

But spot VMs are **fixed size** VMs and ...

Large Spot VM gets evicted for a regular VM

- **Unallocated resources** leveraged as spot VMs with **relaxed SLOs**
 - Spot VMs can be **revoked** anytime for regular-priority VMs
 - Cost ~50-90% less than regular-priority VMs

But spot VMs are **fixed size** VMs and ...

Multiple Small Spot VMs entail high and eviction overhead

Our Proposal: Harvest VM and SLOs for Them

- Harvest VM a new class of **evictable** VMs
 - Allocated with a minimum size (physical resources)
 - Dynamically grows and shrinks to harvest unallocated resources on the host
 - Only evicted if its minimum size is needed for a regular VM

- Harvest VMs different than Burstable VMs
 - Burstable VMs only burst for brief time up to their max size after accumulating credits
 - Harvest VMs grow to consume all unallocated resources at all times

Road Map

- Characterize the unallocated resources of all Azure clusters
- Harvest VMs: new VM type that harvests unallocated resources
- SLO for Harvest VM: predict survival and amount of harvested resources
- Harvest Hadoop: platform to leverage harvested resources transparently
- Lessons and experiences from production

Characterizing unallocated resources

- Methodology
 - 6-month long traces from February to October 2019
 - All azure production clusters for regular compute (e.g., no storage or GPUs)
 - Compute unallocated resources for each host server

Characterization: Temporal patterns

- Unallocated resources for a region
 - 1-hour shows *diurnal* pattern (nights have more)
 - 1-day shows weekly patterns (weekends have more)
 - Fewer servers have enough unallocated capacity over longer horizon

3

Characterization: Cluster behaviors

- Unallocated resources at region level are **stable**
- Unallocated resources at cluster level can change **abruptly**

Region Level

Cluster Level

Characterization: Key Takeaways

- Many unallocated resources available for harvesting
 - Dynamic temporal and spatial behaviors

- Unallocated resources **not evenly** distributed across clusters
 - Smaller amount of resources more widely available
 - Larger amounts of resources may last longer

Many additional unallocated resources beyond spot VMs size

Filling with spot VMs takes many more VMs (and many more evictions)

Harvest VMs: Overview

• New VM class

- User picks minimum/maximum size
- Harvest unallocated resources dynamically
- T₀: All unallocated first
- *T*₁: *Grow* when VM leaves
- T₂: Shrink when new VM lands in host
- T₃: Evicted if providers needs minimum

Harvest VMs: Implementation

- Based on Azure VM EXv3

 - Fixed number (e.g., 40) of virtual cores
- Currently at most one Harvest VM per host server
- Changes in physical resources exposed to VMs
- Pricing
 - Same price as spot VM for minimum size
 - Further discount (e.g., 50%) on any additional cores beyond the minimum size
- Available in production for interval users

SLOs for Harvest VMs

- Hard to provision just enough VMs with variable resources
 - *Key*: VMs survival rate?
 - *Key*: How many resources will I get on average?

- Example SLO: User requests 100 Harvest VMs in East US
 - 85% of them survive \rightarrow 1-hour and 35% for \rightarrow 1-month
 - An average of 8.5 cores
 - 95% confidence intervals (80-90% survive \rightarrow 1-hour)

SLO Predictor Features

Random Forest Regressor

- Features
 - Total VMs in the cluster
 - Total cores/memory allocated and available
 - Cluster characteristics (generation, number of racks,...)
 - Auto-regressive (e.g., values 1 day ago)
 - Moving average (average values for the last week)

Integrated into Resource Central (SOSP'17)

Building Application on Harvest VMs

- Applications can naively use Harvest VMs
 - Leverage fault tolerance for evictions \rightarrow Inefficient
 - Run using minimum resources available \rightarrow May be slower
- Extend Hadoop run many applications (Spark, MapReduce,...)

HVM Manager lontainer KVP

Building Application on Harvest VMs

- Applications can naively use Harvest VMs
 - Leverage fault tolerance for evictions \rightarrow Inefficient
 - Run using minimum resources available \rightarrow May be slower
- Extend Hadoop run many applications (Spark, MapReduce,...)

HVM Manager Container KVP

Evaluation

- Use production data for evaluation
 - 25 clusters from 14 regions across 2 server generations
 - December 2019 to April 2020 (train/test split January 15th)

- **Extreme scenario**: every possible hole is filled
 - Simulate real traces and insert as many Harvest VMs as possible

- Harvest Hadoop deployment
 - Private cluster not many VMs coming and going (stable)
 - *Canary cluster* many VMs created and destroyed (stress test)

Evaluation: Spot VMs vs Harvest VMs

Requires around 3.7x more evictable VMs on average than Harvest VMs to fill unallocated capacity across all clusters

Evaluation: Random Forest vs MLP

Random Forest yields an (overall) accuracy of ~98% with mean error of ~0.2 cores

Evaluation: SLOs for Harvested Cores

Prediction accuracy is very high i.e. average cores SLO would be accurate

Evaluation: SLOs for Survival Rate

Evaluation: SLOs for Survival Rate

Errors are balanced and there are as many overpredictions as underpredictions

Evaluation: Cost Comparison

Harvest VMs 91% cheaper than regular VMs and 45% cheaper than spot VMs

Lessons from Production

Adapting applications is the main blocker

- When a Harvest VM gets 40 virtual cores, it becomes unbalanced
 - 2 cores/16GB of memory \rightarrow 40 cores/16GB of memory

- Allowing multiple Harvest VMs per server
 - Add the maximum size of each Harvest VM

- Impact to regular VMs
 - Optimization to reduce impact in creation time

Conclusion

- Characterization shows many unallocated resources for harvesting
 - Dynamic temporal and spatial behaviors
- Harvest VMs successful at leveraging unallocated resources
- We provide SLOs for the availability of harvested resources
 - Our prediction models show high accuracy (~98%)
- Harvest Hadoop can adjust to changing harvested resources
- Harvest VMs and Harvest Hadoop running in production in Azure
 - 91% cheaper than regular VMs
 - 45% cheaper than spot VMs and with 73% fewer evictions

Thank You Questions?

Email:

lambati@umass.edu inigog@microsoft.com ricardob@microsoft.com

