Microsecond Consensus
for Microsecond Applications

Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui,
Virendra J. Marathe, Athanasios Xygkis, Igor Zablotchi

\‘ E P F L ORACLE

vmware Labs

Does Consensus Have to Be Slow?

* With the right technology and the right algorithms, no
* Near-microsecond consensus is possible

Why Care About Microsecond Consensus?

* Microsecond-scale computing is here

Finance
(e.g., high-frequency trading)

Embedded systems
(e.g., industrial robots)

o
Bk (11
3 EET EE
! =
tia lit1] i)
&5) 20 R
e
& Zl
L, ol ol gl - B o [|] e
o | { 5
“, ‘:'““‘\I “ ?E‘ m{nm =1 7 %
< Tl s W] VLT] 6] MR 2D
=l 1 |- W i i
76

i N
i Kt g

Microservices
(e.g., key-value stores)

BlEE
= b w
mE|(Em
| 2
5=
Sy i
=
gl a
||) I
- o—
|
1 [
AlEE
g
7 1

Why Care About Microsecond Consensus?

 Sometimes desirable to replicate
* Replication should also be at microsecond level

* Existing solutions are too costly

 TCP/IP adds overhead of >100 us
« RDMA solutions exist, but we can do better

Need algorithmic solutions!

Our Contribution: Mu 'Ll

 SMR system for fast networks (datacenter setting)

 Common case: no failures, no asynchrony

» Replication time is just 1.3 us (small requests)
* 61% better than state-of-the-art

e |f leader fails

* Fail-over to new leader in under 1 ms
e 90% better than state-of-the-art

Outline

» Background: RDMA and SMR

* How does Mu achieve 1.3 us replication latency?
* How does Mu achieve <1 ms fail-over time?
 Evaluation

Background: RDMA

* Networking hardware feature

 Direct access to remote memaory Server 1 Server 2
* No CPU at remote side

* No OS at either side

» Good performance ,
Direct
¢ ~1US Iatency Access

 ~100Gbps bandwidth

* Configurable access permissions

Background: State Machine Replication

* Replicates a service across
several machines = replicas

 Availability, consistency despite
replica failures

» Strong consistency:
linearizability

/

Ap

te

\

crash fault

ne

App state machine
@ O O

[Consensus engine]

\u >

Server

Server

\

App state machine
@ O O

[Consensus engine]

AV g

Server

Outline

» How does Mu achieve 1.3 us replication latency?

* How does Mu achieve <1 ms fail-over time?
e Evaluation

Mu Roles

Leader(s):

request request * Accept requests from client(s)
capture Injection

request

* Replicate to followers
« Apply to local app copy
* Respond to client(s)

response

Followers:
« Passively wait for replicated requests

« Apply to local app copy
* Monitor leader health; if leader is
slow, switch to new leader

leader follower 10

Mu Common Case Replication

Q: How does Mu achieve ~1 us replication?

request
request request
« capture injection
response

1. issue write

albjcldle|f Hmﬂﬂﬂi
ok

2. wait for completion

leader follower 13

Common Case Replication: Intuition

Invariant: only 1 server has write permission on a given memory

Server1

get ok ok NOT OK
permission write write

(memory)

Server 2
get ok
permission write/ ok

Server 3

Common Case Replication: Intuition

4)

| was running solo
(no one else wrote)

= o

Server 1 >

get ok ok ok
permission write write
Server 2
get ok
permission write / ok
>

(memory)

Server 3

Q: How does Mu achieve ~1 us replication?

M u BaCkg fOu nd Pla ne A: Replication = single round trip.

Leader simply writes on followers, relies on
permissions to ensure safety.

request

request request
capture injection

response

leader follower 16

Outline

* How does Mu achieve <1 ms fail-over time?

e Evaluation

17

Mu Failure Detection

g N
- request g t ™~
reques A~
) capture ~ T »)
) response| ({)
propose| | ok application

-

~

[heartbeat |42

failure detection

perm
mgmt

consensus engine y

leader

N

¢)
request e S
L —@ O O
Injection “~— :)

~ J

executel lok application

~

[heartbeat

) (L]

failure detection

perm
mgmt

Pull-score failure detection

/N

 |ncrement local

heartbeat

e Readremote

heartbeats

Assign badness
score to other
servers

Heartbeat stays the
same: score T
Heartbeat
increases: score {

Score not affected by slow reads!

Cconsensus engine y

follower

Q: How does Mu achieve <1 ms fail-over?

A: Aggressive timeout enabled by

pull-score mechanism.

18

Outline

» Background: RDMA and SMR
* How does Mu achieve 1.3 us replication latency?
* How does Mu achieve <1 ms fail-over time?

e EFvaluation

19

Evaluation: Setup

* Metrics
e Latency
 Fail-over time
* Throughput

* Applications:
« RDMA-based: HERD
* Financial: Liquibook
 TCP/IP-based: Redis, Memcached

» Competition:
« DARE, APUS, Hermes

- 100 Gbps [Lilcl) 1
Server 1)
Infiniband Switch

Mu | DARE | Hermes | APUS
Liquibook | v X X X
HERD| v X X X
Memcached & Redis| v X X v

20

Evaluation: Replication Latency

Latency (us)

7,

AN\ N

-

Mu + HERD
Mu + LiQ

Mu + mcd

YYyy
XN

Mu +rds Apus+mcd\

DARE U Apus+rds

Hermes

Competition

21

Evaluation: Fail-over time

Failure detection + Permission switch time ~ Fail-over time

Permissions switch Fail-over

p—
-
T

o0
)

Frequency
S

40
20
0
220 240 260 280 850 875 900 925
Time (us) Time (us)

22

Conclusion

* Near-microsecond consensus is possible!

* Important for microsecond apps
* Mu: an RDMA-based SMR system

» Single round-trip replication = 1.3 us replication time
» Pull-score failure detection - <1 ms fail-over time

ARTIFACT ARTIFACT
EVALUATED EVALUATED

AVAILABLE

https://github.com/LPD-EPFL/mu

Check out paper for more!

