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Does Consensus Have to Be Slow?

* With the right technology and the right algorithms, no
* Near-microsecond consensus is possible



Why Care About Microsecond Consensus?

* Microsecond-scale computing is here

Finance
(e.g., high-frequency trading)

Embedded systems
(e.g., industrial robots)
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Microservices
(e.g., key-value stores)
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Why Care About Microsecond Consensus?

 Sometimes desirable to replicate
* Replication should also be at microsecond level

* Existing solutions are too costly

 TCP/IP adds overhead of >100 us
« RDMA solutions exist, but we can do better

Need algorithmic solutions!



Our Contribution: Mu 'Ll

 SMR system for fast networks (datacenter setting)

 Common case: no failures, no asynchrony

» Replication time is just 1.3 us (small requests)
* 61% better than state-of-the-art

e |f leader fails

* Fail-over to new leader in under 1 ms
e 90% better than state-of-the-art



Outline

» Background: RDMA and SMR

* How does Mu achieve 1.3 us replication latency?
* How does Mu achieve <1 ms fail-over time?
 Evaluation



Background: RDMA

* Networking hardware feature

 Direct access to remote memaory Server 1 Server 2
* No CPU at remote side

* No OS at either side

» Good performance ,
Direct
¢ ~1US Iatency Access

 ~100Gbps bandwidth

* Configurable access permissions



Background: State Machine Replication

* Replicates a service across
several machines = replicas

 Availability, consistency despite
replica failures

» Strong consistency:
linearizability
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Outline

» How does Mu achieve 1.3 us replication latency?

* How does Mu achieve <1 ms fail-over time?
e Evaluation



Mu Roles

Leader(s):

request request * Accept requests from client(s)
capture Injection

request

* Replicate to followers
« Apply to local app copy
* Respond to client(s)

response

Followers:
« Passively wait for replicated requests

« Apply to local app copy
* Monitor leader health; if leader is
slow, switch to new leader

leader follower 10



Mu Common Case Replication

Q: How does Mu achieve ~1 us replication?

request
request request
« capture injection
response

1. issue write

albjcldle|f Hmﬂﬂﬂi
ok

2. wait for completion

leader follower 13



Common Case Replication: Intuition

Invariant: only 1 server has write permission on a given memory

Server1

get ok ok NOT OK
permission write write

(memory)

Server 2
get ok
permission write/ ok

Server 3



Common Case Replication: Intuition

4 )

| was running solo
(no one else wrote)
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Server 1 >

get ok ok ok
permission write write
Server 2
get ok
permission write / ok
>

(memory)

Server 3



Q: How does Mu achieve ~1 us replication?

M u BaCkg fOu nd Pla ne A: Replication = single round trip.

Leader simply writes on followers, relies on
permissions to ensure safety.

request

request request
capture injection

response

leader follower 16



Outline

* How does Mu achieve <1 ms fail-over time?

e Evaluation
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Mu Failure Detection
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Pull-score failure detection

/N

 |ncrement local

heartbeat

e Readremote

heartbeats

Assign badness
score to other
servers

Heartbeat stays the
same: score T
Heartbeat
increases: score {

Score not affected by slow reads!

Cconsensus engine y

follower

Q: How does Mu achieve <1 ms fail-over?

A: Aggressive timeout enabled by

pull-score mechanism.
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Outline

» Background: RDMA and SMR
* How does Mu achieve 1.3 us replication latency?
* How does Mu achieve <1 ms fail-over time?

e EFvaluation
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Evaluation: Setup

* Metrics
e Latency
 Fail-over time
* Throughput

* Applications:
« RDMA-based: HERD
* Financial: Liquibook
 TCP/IP-based: Redis, Memcached

» Competition:
« DARE, APUS, Hermes

- 100 Gbps [ Lilcl) 1
Server 1 )
Infiniband Switch

Mu | DARE | Hermes | APUS
Liquibook | v X X X
HERD| v X X X
Memcached & Redis| v X X v
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Evaluation: Replication Latency

Latency (us)
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Evaluation: Fail-over time

Failure detection + Permission switch time ~ Fail-over time

Permissions switch Fail-over
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Conclusion

* Near-microsecond consensus is possible!

* Important for microsecond apps
* Mu: an RDMA-based SMR system

» Single round-trip replication = 1.3 us replication time
» Pull-score failure detection - <1 ms fail-over time

ARTIFACT ARTIFACT
EVALUATED EVALUATED

AVAILABLE

https://github.com/LPD-EPFL/mu

Check out paper for more!



