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Does Consensus Have to Be Slow?
• With the right technology and the right algorithms, no

• Near-microsecond consensus is possible
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Why Care About Microsecond Consensus?
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• Microsecond-scale computing is here

Finance 
(e.g., high-frequency trading)

Embedded systems
(e.g., industrial robots)

Microservices
(e.g., key-value stores)



• Sometimes desirable to replicate
• Replication should also be at microsecond level
• Existing solutions are too costly

• TCP/IP adds overhead of >100 us
• RDMA solutions exist, but we can do better
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Need algorithmic solutions!

Why Care About Microsecond Consensus?



Our Contribution: Mu
• SMR system for fast networks (datacenter setting)
• Common case: no failures, no asynchrony

• Replication time is just 1.3 us (small requests)
• 61% better than state-of-the-art

• If leader fails
• Fail-over to new leader in under 1 ms
• 90% better than state-of-the-art
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Outline
• Background: RDMA and SMR
• How does Mu achieve 1.3 us replication latency?
• How does Mu achieve <1 ms fail-over time?
• Evaluation
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Background: RDMA
• Networking hardware feature
• Direct access to remote memory

• No CPU at remote side
• No OS at either side

• Good performance 
• ~1us latency
• ~100Gbps bandwidth

• Configurable access permissions
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Background: State Machine Replication
• Replicates a service across 

several machines = replicas
• Availability, consistency despite 

replica failures
• Strong consistency: 

linearizability
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Outline
• Background: RDMA and SMR
• How does Mu achieve 1.3 us replication latency?
• How does Mu achieve <1 ms fail-over time?
• Evaluation
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Mu Roles
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Leader(s):
• Accept requests from client(s)
• Replicate to followers
• Apply to local app copy
• Respond to client(s)

Followers:
• Passively wait for replicated requests
• Apply to local app copy
• Monitor leader health; if leader is 

slow, switch to new leader



Mu Common Case Replication
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Q: How does Mu achieve ~1 us replication?

A: Replication = single round trip. 
Leader simply writes on followers, relies on
permissions to ensure safety.
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Common Case Replication: Intuition
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Common Case Replication: Intuition
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Mu Background Plane
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Q: How does Mu achieve ~1 us replication?

A: Replication = single round trip. 
Leader simply writes on followers, relies on
permissions to ensure safety.



Outline
• Background: RDMA and SMR
• How does Mu achieve 1.3 us replication latency?
• How does Mu achieve <1 ms fail-over time?
• Evaluation
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Mu Failure Detection
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Pull-score failure detection

• Increment local 
heartbeat  

• Read remote 
heartbeats

• Assign badness 
score to other 
servers

• Heartbeat stays the 
same: score ↑

• Heartbeat 
increases: score ↓

Q: How does Mu achieve <1 ms fail-over?

A: Aggressive timeout enabled by 
pull-score mechanism.

Score not affected by slow reads!



Outline
• Background: RDMA and SMR
• How does Mu achieve 1.3 us replication latency?
• How does Mu achieve <1 ms fail-over time?
• Evaluation
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Evaluation: Setup
• Metrics

• Latency
• Fail-over time
• Throughput

• Applications:
• RDMA-based: HERD
• Financial: Liquibook
• TCP/IP-based: Redis, Memcached

• Competition:
• DARE, APUS, Hermes
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100 Gbps 
Switch

100 Gbps
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Mu DARE Hermes APUS
Liquibook ✓ ✘ ✘ ✘

HERD ✓ ✘ ✘ ✘
Memcached & Redis ✓ ✘ ✘ ✓



Evaluation: Replication Latency
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Evaluation: Fail-over time
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Fail-over timePermission switch time ≈Failure detection +



Conclusion 
• Near-microsecond consensus is possible!
• Important for microsecond apps
• Mu: an RDMA-based SMR system

• Single round-trip replication → 1.3 us replication time
• Pull-score failure detection → <1 ms fail-over time

23Check out paper for more!

https://github.com/LPD-EPFL/mu


