
Microsecond Consensus 
for Microsecond Applications

Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, 
Virendra J. Marathe, Athanasios Xygkis, Igor Zablotchi



Does Consensus Have to Be Slow?
• With the right technology and the right algorithms, no

• Near-microsecond consensus is possible

2



Why Care About Microsecond Consensus?

3

• Microsecond-scale computing is here

Finance 
(e.g., high-frequency trading)

Embedded systems
(e.g., industrial robots)

Microservices
(e.g., key-value stores)



• Sometimes desirable to replicate
• Replication should also be at microsecond level
• Existing solutions are too costly

• TCP/IP adds overhead of >100 us
• RDMA solutions exist, but we can do better

4

Need algorithmic solutions!

Why Care About Microsecond Consensus?



Our Contribution: Mu
• SMR system for fast networks (datacenter setting)
• Common case: no failures, no asynchrony

• Replication time is just 1.3 us (small requests)
• 61% better than state-of-the-art

• If leader fails
• Fail-over to new leader in under 1 ms
• 90% better than state-of-the-art

5

!



Outline
• Background: RDMA and SMR
• How does Mu achieve 1.3 us replication latency?
• How does Mu achieve <1 ms fail-over time?
• Evaluation

6



Background: RDMA
• Networking hardware feature
• Direct access to remote memory

• No CPU at remote side
• No OS at either side

• Good performance 
• ~1us latency
• ~100Gbps bandwidth

• Configurable access permissions

7

CPU CPU

RAM RAM

Server 1 Server 2

Direct
Access



Background: State Machine Replication
• Replicates a service across 

several machines = replicas
• Availability, consistency despite 

replica failures
• Strong consistency: 

linearizability

8

App state machine

Server

App state machine

Server

App state machine

Server

crash fault

Consensus engine

Consensus engine

Consensus engine



Outline
• Background: RDMA and SMR
• How does Mu achieve 1.3 us replication latency?
• How does Mu achieve <1 ms fail-over time?
• Evaluation

9



Mu Roles

10

client
request

response
application

follower

execute ok

consensus engine

request
injection

application

leader

propose ok

consensus engine

request
capture

RDMA

Leader(s):
• Accept requests from client(s)
• Replicate to followers
• Apply to local app copy
• Respond to client(s)

Followers:
• Passively wait for replicated requests
• Apply to local app copy
• Monitor leader health; if leader is 

slow, switch to new leader



Mu Common Case Replication

13

client
request

response
application

follower

execute ok

consensus engine

request
injection

a b c d e
log

application

leader

propose ok

consensus engine

request
capture

a b c d e
log

RDMA

1. issue write

2. wait for completion

Q: How does Mu achieve ~1 us replication?

A: Replication = single round trip. 
Leader simply writes on followers, relies on
permissions to ensure safety.

f

f
ok



Common Case Replication: Intuition

14

Server 1
get 

permission
ok

write
ok NOT OK

write

Server 3

get 
permission

ok
write ok

Server 2
(memory)

Invariant: only 1 server has write permission on a given memory



Common Case Replication: Intuition

15

Server 1
get 

permission
ok

write
ok

Server 3

get 
permission

ok
write ok

Server 2
(memory)

write
ok

I was running solo 
(no one else wrote)



Mu Background Plane

16

client
request

response
application

follower

execute ok

consensus engine

perm
mgmt

request
injection

a b c d e f
log

application

leader

propose ok

consensus engine

perm
mgmt

request
capture

a b c d e f
log

RDMA

RDMA

Q: How does Mu achieve ~1 us replication?

A: Replication = single round trip. 
Leader simply writes on followers, relies on
permissions to ensure safety.



Outline
• Background: RDMA and SMR
• How does Mu achieve 1.3 us replication latency?
• How does Mu achieve <1 ms fail-over time?
• Evaluation

17



Mu Failure Detection

18

client
request

response
application

follower

execute ok

consensus engine

request
injection

a b c d e f
log

application

leader

propose ok

consensus engine

failure detection
heartbeat 42

perm
mgmt

request
capture

a b c d e f
log

RDMA

RDMA

failure detection
heartbeat 17

perm
mgmt

Pull-score failure detection

• Increment local 
heartbeat  

• Read remote 
heartbeats

• Assign badness 
score to other 
servers

• Heartbeat stays the 
same: score ↑

• Heartbeat 
increases: score ↓

Q: How does Mu achieve <1 ms fail-over?

A: Aggressive timeout enabled by 
pull-score mechanism.

Score not affected by slow reads!



Outline
• Background: RDMA and SMR
• How does Mu achieve 1.3 us replication latency?
• How does Mu achieve <1 ms fail-over time?
• Evaluation

19



Evaluation: Setup
• Metrics

• Latency
• Fail-over time
• Throughput

• Applications:
• RDMA-based: HERD
• Financial: Liquibook
• TCP/IP-based: Redis, Memcached

• Competition:
• DARE, APUS, Hermes

20

Server 1 Server 3

Server 4

Server 2

100 Gbps 
Switch

100 Gbps
Infiniband

Mu DARE Hermes APUS
Liquibook ✓ ✘ ✘ ✘

HERD ✓ ✘ ✘ ✘
Memcached & Redis ✓ ✘ ✘ ✓



Evaluation: Replication Latency

0

2

4

6

8

10
La

te
nc

y 
(μ

s)

1.
40

1.
34 1.
68

1.
68

5.
15

4.
55

6.
80 6.
86

Mu + HERD
Mu + LiQ
Mu + mcd

Mu + rds
DARE
Hermes

Apus+mcd
Apus+rds

21
Mu Competition



Evaluation: Fail-over time

220 240 260 280
Time (μs)

0

20

40

60

80

100
Fr

eq
ue

nc
y

Permissions switch

850 875 900 925
Time (μs)

0

20

40

60

Fail-over

22

Fail-over timePermission switch time ≈Failure detection +



Conclusion 
• Near-microsecond consensus is possible!
• Important for microsecond apps
• Mu: an RDMA-based SMR system

• Single round-trip replication → 1.3 us replication time
• Pull-score failure detection → <1 ms fail-over time

23Check out paper for more!

https://github.com/LPD-EPFL/mu


