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Intrusion Detection and Prevention System

• IDS/IPS is deployed at the gateway to identify network threats
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• Check packets (including payload) against complex rules
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Intrusion Detection and Prevention System

• Compute intensive



Problem: State-of-the-Art Cannot Keep Up
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Inefficient to Scale Up Using State-of-the-Art

• Evaluate Snort 3.0 equipped with Hyperscan pattern matching library

• Need 4-21 servers (32-core) and 1125-6000 W

667

500
400

333
400

125 125

0

200

400

600

800

Mixed-1 Mixed-2 Mixed-3 Mixed-4 Mixed-5 Norm-1 Norm-2

N
um

be
r 

of
 c

or
es

Traces

Number of Cores Needed to Reach 100Gbps

*Assuming ideal scaling for Snort
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Pigasus: 100Gbps IPS on a Single Server

• 1 FPGA-based SmartNIC + 16-core CPU
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Order-of-Magnitude Efficiency Improvement

• Snort: 4-21 servers (32-core) and 1125-6000 W

• Pigasus: 1 server (16-core) and 49-166 W
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Number of Cores Needed to Reach 100Gbps

*Pigasus’ numbers are 
actual core-count
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What is the secret sauce behind the 100x improvement?

 FPGA-First Architecture
Fundamentally different scheme to make 100x improvement possible



Traditional “FPGA-as-Offload” Acceleration
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• Packets come into CPU first

• CPU is the main processing unit

• FPGA accelerates a particular task, 
e.g MSPM



Prior Work Cannot Get 100x Speedup

• No dominating task anymore (Hyperscan has made MSPM 8x faster)
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• Up to ~2X speedup assuming ideal acceleration



Pigasus: Inverted Offload Approach

• “FPGA-first” architecture: FPGA is the main processing unit

• Common cases are entirely processed on FPGA
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Challenge: Limited Fast Memory on FPGA

• Only 16 MB Block RAM (BRAM)
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• Using existing FPGA modules: 
more than 87 MB
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What is the secret sauce behind the 100x improvement?

 FPGA-First Architecture
Fundamentally different scheme to make 100x improvement possible

*Please refer to our paper for Flow Reassembly and Memory Resource Management

 Hierarchical Multi-String Pattern Matching (MSPM)
One of the algorithms to address the memory challenge



Multi-String Pattern Matching (MSPM)

• Checking payload and port number against 10K rules in “one” pass

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS 
(…;content:”username=”,fast_pattern;
content:”/GetPermisssions.asp”;
pcre:”(^|&)username=[^&]*?”; sid = 2019;…)

Snort’s MSPM:
- Header
- Fast pattern
(Rest is checked by Full Matcher)

Pigasus’ MSPM:
- Header
- Fast pattern
- Non-fast string pattern 
(Dominated Snort’s Full Matcher)
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Any field mismatch => Rule not match



MSPM Design Options
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State Machine-
Based:

23 MB of BRAM

Snort Hyperscan
(Hashtable-based):

25 MB of BRAM

Pigasus
(Hashtable-based):

3 MB of BRAM

Complete more work



Pigasus Utilizes Perf & Memory Tradeoff
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Payload[i,i+8]Payload[i+31,i+31+8] …

• High performance => Process more data in parallel => More memory

Matcher
Replica_31

Matcher
Replica_0

…

Key observation: no need to keep up 100Gbps **everywhere**
Why not use less memory when lower performance is allowed



Use Hierarchical Filters to Save Memory
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Fast Pattern
32X 

String Matcher
Replicas

100Gbps
of Data

Header Match
8X 

Rule Header Matcher
Replicas

Non-fast Pattern
16X 

String Matcher
Replicas ~5Gbps~11Gbps~23Gbps

To CPU

Key Idea: Hierarchical Filtering with Reduced Replicas at Each Layer



Evaluation
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Pigasus Needs 100x Less Cores
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*Snort’s numbers are extrapolated from single core zero loss throughput
*Pigasus’ numbers are actual core-count
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Pigasus is Much Cheaper
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Snort’s Total Cost of Ownership (TCO) $36,539
Pigasus’ TCO $10,642
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*Assume 3 years lifetime 



Conclusion

• Pigasus supports 100Gbps on a single server, saving hundreds of cores

Pigasus is publicly available at 
https://github.com/cmu-snap/pigasus

• Pigasus proposes “FPGA-first” architecture, which is promising in 
performance but challenging to realize due to memory constraints
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• Pigasus efficiently uses memory, e.g. Hierarchical Filtering in MSPM

Contact: zhipengzhao@cmu.edu

https://github.com/cmu-snap/pigasus
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