
Achieving 100Gbps Intrusion
Prevention on a Single Server

Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, Justine Sherry

Intrusion Detection and Prevention System

• IDS/IPS is deployed at the gateway to identify network threats

Internet
1000001000000010000
0001000100000111100
1000010111……………….

Local Network

App..
App..

• Check packets (including payload) against complex rules

2

Intrusion Detection and Prevention System

• Compute intensive

Problem: State-of-the-Art Cannot Keep Up

0
10
20
30
40
50
60
70
80
90

100

Li
ne

ra
te

(G
bp

s)

2009
2012

2015 2017

Today
Line Rate Evolution

Year
3

Inefficient to Scale Up Using State-of-the-Art

• Evaluate Snort 3.0 equipped with Hyperscan pattern matching library

• Need 4-21 servers (32-core) and 1125-6000 W

667

500
400

333
400

125 125

0

200

400

600

800

Mixed-1 Mixed-2 Mixed-3 Mixed-4 Mixed-5 Norm-1 Norm-2

N
um

be
r

of
 c

or
es

Traces

Number of Cores Needed to Reach 100Gbps

*Assuming ideal scaling for Snort

4

Pigasus: 100Gbps IPS on a Single Server

• 1 FPGA-based SmartNIC + 16-core CPU

5

FPGA
NIC

core core

core core

… …

Server

Order-of-Magnitude Efficiency Improvement

• Snort: 4-21 servers (32-core) and 1125-6000 W

• Pigasus: 1 server (16-core) and 49-166 W

667

500
400

333
400

125 125

7 4 6 14 2 1 1
0

100
200
300
400
500
600
700

Mixed-1 Mixed-2 Mixed-3 Mixed-4 Mixed-5 Norm-1 Norm-2

N
um

be
r

of
 C

or
es

Traces

Snort Pigasus

Number of Cores Needed to Reach 100Gbps

*Pigasus’ numbers are
actual core-count

6

7

What is the secret sauce behind the 100x improvement?

 FPGA-First Architecture
Fundamentally different scheme to make 100x improvement possible

Traditional “FPGA-as-Offload” Acceleration

Multi-String
Pattern Match

FPGA

8

NIC

Pkt in

Pkt out

Flow
Reassembly

Parser Full Match

PCIe

PCIe

CPU
Innocent pkts

Suspicious
pkts

• Packets come into CPU first

• CPU is the main processing unit

• FPGA accelerates a particular task,
e.g MSPM

Prior Work Cannot Get 100x Speedup

• No dominating task anymore (Hyperscan has made MSPM 8x faster)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Mixed-1 Mixed-2 Mixed-3 Mixed-4 Mixed-5 Norm-1 Norm-2Fr
ac

tio
n

of
 C

P
U

 T
im

e

Traces

Parsing Reassembly Multi-String Pattern Matching Full Matching Other

Performance breakdown of Snort with Hyperscan

9

• Up to ~2X speedup assuming ideal acceleration

Pigasus: Inverted Offload Approach

• “FPGA-first” architecture: FPGA is the main processing unit

• Common cases are entirely processed on FPGA

Ethernet
Flow

Reassembly
Multi-String

Pattern Match Full Match

Pkt in

Suspicious
pkts

Innocent pkts

Pkt out

Innocent
pktsFPGA

PCIe
Parser

CPU

10

95%
packets

5% packets

Challenge: Limited Fast Memory on FPGA

• Only 16 MB Block RAM (BRAM)

16 MB

Ethernet
Flow

Reassembly
Multi-String

Pattern Match

FPGA

Parser

Not Fit !

11

• Using existing FPGA modules:
more than 87 MB

12

What is the secret sauce behind the 100x improvement?

 FPGA-First Architecture
Fundamentally different scheme to make 100x improvement possible

*Please refer to our paper for Flow Reassembly and Memory Resource Management

 Hierarchical Multi-String Pattern Matching (MSPM)
One of the algorithms to address the memory challenge

Multi-String Pattern Matching (MSPM)

• Checking payload and port number against 10K rules in “one” pass

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(…;content:”username=”,fast_pattern;
content:”/GetPermisssions.asp”;
pcre:”(^|&)username=[^&]*?”; sid = 2019;…)

Snort’s MSPM:
- Header
- Fast pattern
(Rest is checked by Full Matcher)

Pigasus’ MSPM:
- Header
- Fast pattern
- Non-fast string pattern
(Dominated Snort’s Full Matcher)

13

Any field mismatch => Rule not match

MSPM Design Options

14

State Machine-
Based:

23 MB of BRAM

Snort Hyperscan
(Hashtable-based):

25 MB of BRAM

Pigasus
(Hashtable-based):

3 MB of BRAM

Complete more work

Pigasus Utilizes Perf & Memory Tradeoff

15

Payload[i,i+8]Payload[i+31,i+31+8] …

• High performance => Process more data in parallel => More memory

Matcher
Replica_31

Matcher
Replica_0

…

Key observation: no need to keep up 100Gbps **everywhere**
Why not use less memory when lower performance is allowed

Use Hierarchical Filters to Save Memory

16

Fast Pattern
32X

String Matcher
Replicas

100Gbps
of Data

Header Match
8X

Rule Header Matcher
Replicas

Non-fast Pattern
16X

String Matcher
Replicas ~5Gbps~11Gbps~23Gbps

To CPU

Key Idea: Hierarchical Filtering with Reduced Replicas at Each Layer

Evaluation

17

Pigasus Needs 100x Less Cores
667

500

400
333

400

125 125

7 4 6 14 2 1 1
0

100

200

300

400

500

600

700

Mixed-1 Mixed-2 Mixed-3 Mixed-4 Mixed-5 Norm-1 Norm-2

N
um

be
r

of
 C

or
es

Traces

Snort Pigasus

*Snort’s numbers are extrapolated from single core zero loss throughput
*Pigasus’ numbers are actual core-count

18

Pigasus is Much Cheaper

6000

4500

3600
3000

3600

1125 1125

103 76 94 166 58 49 49
0

1000

2000

3000

4000

5000

6000

7000

Mixed-1 Mixed-2 Mixed-3 Mixed-4 Mixed-5 Norm-1 Norm-2

P
ow

er
 (

W
at

ts
)

Traces

Snort Pigasus

Snort’s Total Cost of Ownership (TCO) $36,539
Pigasus’ TCO $10,642

19

*Assume 3 years lifetime

Conclusion

• Pigasus supports 100Gbps on a single server, saving hundreds of cores

Pigasus is publicly available at
https://github.com/cmu-snap/pigasus

• Pigasus proposes “FPGA-first” architecture, which is promising in
performance but challenging to realize due to memory constraints

20

• Pigasus efficiently uses memory, e.g. Hierarchical Filtering in MSPM

Contact: zhipengzhao@cmu.edu

https://github.com/cmu-snap/pigasus

	Achieving 100Gbps Intrusion Prevention on a Single Server
	Intrusion Detection and Prevention System
	Problem: State-of-the-Art Cannot Keep Up
	Inefficient to Scale Up Using State-of-the-Art
	Pigasus: 100Gbps IPS on a Single Server
	Order-of-Magnitude Efficiency Improvement
	Slide Number 7
	Traditional “FPGA-as-Offload” Acceleration
	Prior Work Cannot Get 100x Speedup
	Pigasus: Inverted Offload Approach
	Challenge: Limited Fast Memory on FPGA
	Slide Number 12
	Multi-String Pattern Matching (MSPM)
	MSPM Design Options
	Pigasus Utilizes Perf & Memory Tradeoff
	Use Hierarchical Filters to Save Memory
	Evaluation
	Pigasus Needs 100x Less Cores
	Pigasus is Much Cheaper
	Conclusion

