Write-Optimized and High-Performance
Hashing Index Scheme for Persistent Memory

Pengfel Zuo, Yu Hua, Jie Wu
Huazhong University of Science and Technology, China

OSDI 2018

Persistent Memory (PM)

» Non-volatile memory as PM Is expected to replace
or complement DRAM as main memory

— Non-volatility, low power, large capacity

PCM ReRAM DRAM
Read (ns) 20-70 20-50 10
Write (ns) 150-220 70-140 10
Non-volatility V v X
Standby Power ~0 ~0 High
Density (Gb/cm?) 13.5 24.5 9.1

C. Xu et al. “Overcoming the Challenges of Crossbar Resistive Memory Architectures”, HPCA, 2015.
K. Suzuki and S. Swanson. “A Survey of Trends in Non-Volatile Memory Technologies: 2000-2014”, IMW 2015.

Index Structures in DRAM vs PM

» Index structures are critical for memoryé&storage systems

» Traditional indexing techniques originally designed for
DRAM become inefficient in PM

— Hardware limitations of NVM
 Limited cell endurance
« Asymmetric read/write latency and energy
« Write optimization matters

— The requirement of data consistency
« Data are persistently stored in PM
« Crash consistency on system failures

Tree-based vs Hashing Index Structures

> | Tree-based index structures

— Pros: good for range query
— Cons: O(log(n)) time complexity
for point query
— Ones for PM have been widely
studied
« CDDS B-tree [FAST 11]
 NV-Tree [FAST'15]
e wB+-Tree [VLDB’15]
* FP-Tree [SIGMOD’16]
« WORT [FAST’17]
e FAST&FAIR [FAST'18]

Tree-based vs Hashing Index Structures

> | Tree-based index structures »

— Pros: good for range query
— Cons: O(log(n)) time complexity
for point query
— Ones for PM have been widely
studied
« CDDS B-tree [FAST 11]
 NV-Tree [FAST'15]
e wB+-Tree [VLDB’15]
* FP-Tree [SIGMOD’16]

« WORT [FAST’17]
« FAST&FAIR [FAST’18]

Hashing index structures

— Pros: constant time complexity for
point query
— Cons: do not support range guery

— Widely used in main memory
« Main memory databases

* In-memory key-value stores, e.g.,
Memcached and Redis

— When maintained in PM, multiple
non-trivial challenges exist
« Rarely touched by existing work

Challenges of Hashing Indexes for PM

® High overhead for consistency guarantee
— Ordering memory writes
« Cache line flush and memory fence instructions

— Avoiding partial updates for non-atomic writes
* Logging or copy-on-write (CoW) mechanisms

8-byte width
Volatile caches Non-volatile memory

Challenges of Hashing Indexes for PM

® High overhead for consistency guarantee

@2 Performance degradation for reducing writes

— Hashing schemes for DRAM usually cause many extra
writes for dealing with hash collisions [INFLOW’15, MSST’17]

— Write-friendly hashing schemes reduce writes but at the
cost of decreasing access performance
« PCM-friendly hash table (PFHT) [INFLOW’15]
« Path hashing [MSST17]

Challenges of Hashing Indexes for PM

® High overhead for consistency guarantee
@2 Performance degradation for reducing writes

® Cost inefficiency for resizing hash table
— Double the table size and iteratively rehash all items

— Take O(N) time to complete
— N insertions with cache line flushes & memory fences

Rehash all items

Old Hash Table New Hash Table

Existing Hashing Index Schemes for PM

(”X”-' bad, //_‘//: gOOd, //_//: moderate)

Memory efficiency
Search
Deletion
Insertion
NVM writes

Resizing

X X X X < <

X X <

v
X
X

Consistency

[1] B. Debnath et al. “Revisiting hash table design for phase change memory”, INFLOW, 2015.

[2] P. Zuo and Y. Hua. “A write-friendly hashing scheme for non-volatile memory systems”, MSST, 2017.

Existing Hashing Index Schemes for PM

(”X”-' bad, //_‘//: gOOd, //_//: moderate)

Memory efficiency
Search
Deletion
Insertion
NVM writes

Resizing

X X X x < < <
A U N U U U NI N

X X <

v
X
X

Consistency

[1] B. Debnath et al. “Revisiting hash table design for phase change memory”, INFLOW, 2015.

[2] P. Zuo and Y. Hua. “A write-friendly hashing scheme for non-volatile memory systems”, MSST, 2017.

10

Level Hashing

Write-optimized & High-performance Hash Table Structure

One movement

~ T T

7 N
N-4 N-3 N-2 N-1

N4

One movement

Consistency

Resizing
support support
Cost-efficient Low-overhead Consistency
In-place Resizing Scheme Guarantee Scheme

11

Write-optimized Hash Table Structure

Multiple slots per bucket
Two hash locations for each key
Sharing-based two-level structure

At most one movement for each
successful insertion

®© e

Write-optimized Hash Table Structure

® @O 6

Multiple slots per bucket
Two hash locations for each key
Sharing-based two-level structure

At most one movement for each
successful insertion

pe>
0 1 2 3 4

X

S

TL: B

100% |
80% F
60% F
40% F
20% F

F 2.2%
0% *~

Maximum Load
Factor

N-3

D1

N-2

D1+D2 D1+D2+D3

N-1

All

Write-optimized Hash Table Structure

®©O O

Multiple slots per bucket s 123
Two hash locations for each key %% 60% | 47.6%
Sharing-based two-level structure f ‘Z‘Zj : I
At most one movement for each ala
successful insertion D1~ DI+D2 DR
\,\a‘i’m* X %\
0 1 2 3 4 5 N-4 N-3 N-2 N-1

TL: -

Write-optimized Hash Table Structure

100% ¢
- 82.5%

Multiple slots per bucket
Two hash locations for each key

Maximum Load
Factor

®w® O

80%
60% 47.6%
Sharing-based two-level structure ;‘zj I
At most one movement for each el . .
D1

successful insertion D1+D2 D1+D2+D3 Al

TL oooooo - - -
Ve f NS .\./ NS

Write-optimized Hash Table Structure

100% ¢ 91.1%

Multiple slots per bucket

Maximum Load
Factor

® @O

82.5%
80% F
Two hash locations for each key 60% 47.6%
Sharing-based two-level structure | ;‘zj I
At most one movement for each el . .
D1

successful insertion D1+D2 Di1+D2+D3 Al

\,\a‘-"“« X fas bars On/e/m_oxe\ment
/ RN
0 1 2 3 4) N-4 N-3 N-2 N-1
TL: oooooo
N NS N
BL:
N - /(

——

One movement

Write-optimized Hash Table Structure

» \Write-optimized: only 1.2% of insertions incur one movement
» High-performance: constant-scale time complexity for all operations
» Memory-efficient: achieve high load factor by evenly distributing items

0 1 2 3 4 S N-4 N-3 N-2 N-1

B N
Ve f NS .\./ NS

——

One movement

Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level

TL:

k/ \/—

BL:

Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level

2N-4 2N-3 2N-2 2N-1

...... N N\
...... v

Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level

0 1 2 3 4 5 6 7 2N-4 2N-3 2N-2 2N-1
TL:
N VAVl VI N N
IL:

(the interim level)

Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level

0 2N-4 2N-3 2N-2 2N-1
TL:
LN Y Y N/ XZR'Ghashmg
IL: :

(the interim level)

Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level

0 1 2 3 4 5 6 7 2N-4 2N-3 2N-2 2N-1

VVYV N N\

TL:

BL:

Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level

— The new hash table is exactly double size of the old one
— Only 1/3 buckets (i.e., the old bottom level) are rehashed

0 1 2 3 4 5 6 7 2N-4 2N-3 2N-2 2N-1

VVYV N N\

TL:

BL:

Low-overhead Consistency Guarantee

» Atoken associated with each slot in the open-
addressing hash tables

— Indicate whether the slot is empty
— Atokenis 1 bit, e.g., “1” for non-empty, “0” for empty

Abucket: |1]1|0[0]| KV, | KV,

Tokens Slots

Low-overhead Consistency Guarantee

» Atoken associated with each slot in the open-
addressing hash tables

— Indicate whether the slot is empty
— Atokenis 1 bit, e.g., “1” for non-empty, “0” for empty

» Modifying the token area only needs an atomic write
— Leveraging the token to perform log-free operations

Abucket: |1]1|0[0]| KV, | KV,

\ A J
4 4

Tokens Slots

Log-free Deletion

» Delete an existing item

Delete

BOOEACH)

Log-free Deletion

» Delete an existing item

Delete

1(1

0

BN

|

Modify the token in an
atomic write

KV, | KV,

Log-free Deletion

» Delete an existing item

Delete

BOOEACH)

Modify the token in an
atomic write

1{o|olo]| KV, | KV,

» Log-free insertion and log-free resizing
— Please find them in our paper

>

Consistency Guarantee for Update

If directly update an existing
key-value item Iin place
— Inconsistency on system failures

Update

1

Consistency Guarantee for Update

» If directly update an existing
- item in pl
key-value ite place Undate

— Inconsistency on system failures
> Astraightforward solutionis [1{1|0|o| kv, 1}

to use logging

Opportunistic Log-free Update

» Our scheme: check whether there is an empty slot in the bucket

storing the old item
— Yes: log-free update
— No: using logging

Update

1]11]|0(0 KvO

L (D Write KV1’ in an empty slot

1{1]o]o| KV, | KV, | KV,

(2 Modify the two tokens in
an atomic write

1lof1]o| KV, | KV, | KV,

Opportunistic Log-free Update

>
storing the old item
— Yes: log-free update
— No: using logging

100% d—B—B—

P B

= 80% [

CG -

Q L

£ 60%

O - &4 slots/bucket

L 40% f

e [-©-8 slots/bucket

S 20% - 16 slots/bucket
0% -

0 0.10.20.30.4050.60.70.80.9
Load Factor

Our scheme: check whether there is an empty slot in the bucket

Update

1

1

0

0

L (D Write KV1’ in an empty slot

0

0

KV, | KV, | KV’

(2 Modify the two tokens in

an atomic write

KV, | KV, | KV’

Performance Evaluation

» Both iIn DRAM and simulated PM platforms

— Quartz (Hewlett Packard)
A DRAM-based performance emulator for PM

» Comparisons
— Bucketized cuckoo hashing (BCH) [NSDI'13]
— PCM-friendly hash table (PFHT) [INFLOW’15]
— Path hashing [MSST'17]

— In PM, implement their persistent versions using our
oroposed log-free consistency guarantee schemes

Insertion Latency

24000
A | P
, _

!
[

-A-BCH PFHT K
J
-©-Path >¢|Level /

a—/—é”e/é:)

o)}
o
o
o

-A-BCH PFHT !
-©-Path > Level A'

Insertion
Latency (ns)

Insertion
Latency (ns)

© o009 &
% 3 Sfmf X
600 X ¥ ¥ g]]]]] 2400
0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9
Load Factor Load Factor
DRAM NVM read/write latency: 200/600

» Level hashing has the best insertion performance in both DRAM and NVM

34

Update Latency

9000 ¢— A
@ 8000 | fFdd-g-4

7000 E
6000 E
5000 E
4000 E
3000 E -A--BCH -o-PFHT
2000 £ -e-Path ---Level
1000 E —-Level w/o Opp
O C | | | | | | | | | | | | | | | | | | |
O 01 0.2 03 04 05 06 0.7 08 09 1

Load Factor

Update Latency (ns)

©

» Opportunistic log-free update scheme reduces the update latency by 15%~
52%, i.e., speeding up the updates by 1.2X-2.1X

Search Latency

TEZOOO
® z 77 BCH _ =
> 1500} N PFHT g5
5 Path :
S 1000 ELevel —NE-NEo
S | = N7
= 500 PNER NER + UNB |
) 7 7/
©& I 7
0.6 0.8 : 0.6 0.8

Positive Search . Negative Search

» The search latency of level hashing is close to that of BCH, which is much
lower than PFHT and path hashing

Resizing Time

@ _. 250 I
n i /Z
o 200} NPFHT ANEM-
£ - | = Path %
I; 150+ [[ll[]] Level-Trad / ***********
= R Level /
ERIn S ANBE
E 5l %
s Ol B ZNIE 7=
© & L Z — NE
DRAM NVM-200ns/600ns

» Level hashing reduces the resizing time by about 76%, i.e., speeding up
the resizing by 4.3 X

Concurrent Throughput

Libcu-2[]Level-2 Libcu-4 []Level-4 >
B Libcu-8 [Level-8 [l Libcu-16 [l Level-16
18
U" L
o150 R
s
— 12 ,,
s 7l
- of N0 o
=
C 6L R B al >
(@)
>
O = L ~—1 B B ------]| B - -
= |-|
—

90/10 70/30 50/50 30/70 10/90
Search/Insertion Ratio (%)

[1] X. Li et al.. “Algorithmic improvements for fast concurrent cuckoo hashing”, Eurosys, 2014.

Concurrent level hashing:
Support multiple-reader multiple-
writer concurrency via simply
using fine-grained locking

Concurrent level hashing has
1.6 X - 2.1 X higher throughput
than libcuckoo?, due to locking
fewer slots for insertions

38

Conclusion

» Traditional indexing technigues originally designed for
DRAM become inefficient in PM

» We propose level hashing, a write-optimized and high-
performance hashing index scheme for PM

— Write-optimized hash table structure
— Cost-efficient in-place resizing
— Log-free consistency guarantee

» 1.4X-3.0X speedup for insertion, 1.2 X-2.1X speedup
for update, and over 4.3 X speedup for resizing

Thanks! Q&A

(Poster #10)

Open-source code: https://github.com/Pfzuo/Level-Hashing

https://github.com/Pfzuo/Level-Hashing

