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Persistent Memory (PM)

» Non-volatile memory as PM Is expected to replace
or complement DRAM as main memory

— Non-volatility, low power, large capacity

PCM ReRAM DRAM
Read (ns) 20-70 20-50 10
Write (ns) 150-220 70-140 10
Non-volatility V v X
Standby Power ~0 ~0 High
Density (Gb/cm?) 13.5 24.5 9.1

C. Xu et al. “Overcoming the Challenges of Crossbar Resistive Memory Architectures”, HPCA, 2015.
K. Suzuki and S. Swanson. “A Survey of Trends in Non-Volatile Memory Technologies: 2000-2014”, IMW 2015.



Index Structures in DRAM vs PM

» Index structures are critical for memoryé&storage systems

» Traditional indexing techniques originally designed for
DRAM become inefficient in PM

— Hardware limitations of NVM
 Limited cell endurance
« Asymmetric read/write latency and energy
« Write optimization matters

— The requirement of data consistency
« Data are persistently stored in PM
« Crash consistency on system failures




Tree-based vs Hashing Index Structures

> | Tree-based index structures

— Pros: good for range query
— Cons: O(log(n)) time complexity
for point query
— Ones for PM have been widely
studied
« CDDS B-tree [FAST 11]
 NV-Tree [FAST'15]
e wB+-Tree [VLDB’15]
* FP-Tree [SIGMOD’16]
« WORT [FAST’17]
e FAST&FAIR [FAST'18]
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Hashing index structures

— Pros: constant time complexity for
point query
— Cons: do not support range guery

— Widely used in main memory
« Main memory databases

* In-memory key-value stores, e.g.,
Memcached and Redis

— When maintained in PM, multiple
non-trivial challenges exist
« Rarely touched by existing work



Challenges of Hashing Indexes for PM

® High overhead for consistency guarantee
— Ordering memory writes
« Cache line flush and memory fence instructions

— Avoiding partial updates for non-atomic writes
* Logging or copy-on-write (CoW) mechanisms

8-byte width
Volatile caches Non-volatile memory




Challenges of Hashing Indexes for PM

® High overhead for consistency guarantee

@2 Performance degradation for reducing writes

— Hashing schemes for DRAM usually cause many extra
writes for dealing with hash collisions [INFLOW’15, MSST’17]

— Write-friendly hashing schemes reduce writes but at the
cost of decreasing access performance
« PCM-friendly hash table (PFHT) [INFLOW’15]
« Path hashing [MSST17]



Challenges of Hashing Indexes for PM

® High overhead for consistency guarantee
@2 Performance degradation for reducing writes

® Cost inefficiency for resizing hash table
— Double the table size and iteratively rehash all items

— Take O(N) time to complete
— N insertions with cache line flushes & memory fences

Rehash all items

Old Hash Table New Hash Table



Existing Hashing Index Schemes for PM
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[1] B. Debnath et al. “Revisiting hash table design for phase change memory”, INFLOW, 2015.

[2] P. Zuo and Y. Hua. “A write-friendly hashing scheme for non-volatile memory systems”, MSST, 2017.
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Level Hashing

Write-optimized & High-performance Hash Table Structure

One movement
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support support
Cost-efficient Low-overhead Consistency
In-place Resizing Scheme Guarantee Scheme
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Write-optimized Hash Table Structure

Multiple slots per bucket
Two hash locations for each key
Sharing-based two-level structure

At most one movement for each
successful insertion

®© e
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Write-optimized Hash Table Structure
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Write-optimized Hash Table Structure
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Write-optimized Hash Table Structure
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Write-optimized Hash Table Structure

» \Write-optimized: only 1.2% of insertions incur one movement
» High-performance: constant-scale time complexity for all operations
» Memory-efficient: achieve high load factor by evenly distributing items

0 1 2 3 4 S N-4 N-3 N-2 N-1

B N
Ve f NS .\./ NS

——

One movement




Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level

TL:

k/ ...... \/—
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Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level
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Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level

0 2N-4 2N-3 2N-2 2N-1
TL:
LN Y Y N/ XZR'Ghashmg
IL: :

(the interim level )



Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level
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Cost-efficient In-place Resizing

» Put a new level on top of the old hash table and
only rehash items in the old bottom level

— The new hash table is exactly double size of the old one
— Only 1/3 buckets (i.e., the old bottom level) are rehashed

0 1 2 3 4 5 6 7 2N-4 2N-3 2N-2 2N-1
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Low-overhead Consistency Guarantee

» Atoken associated with each slot in the open-
addressing hash tables

— Indicate whether the slot is empty
— Atokenis 1 bit, e.g., “1” for non-empty, “0” for empty

Abucket: |1]1|0[0]| KV, | KV,

Tokens Slots



Low-overhead Consistency Guarantee

» Atoken associated with each slot in the open-
addressing hash tables

— Indicate whether the slot is empty
— Atokenis 1 bit, e.g., “1” for non-empty, “0” for empty

» Modifying the token area only needs an atomic write
— Leveraging the token to perform log-free operations

Abucket: |1]1|0[0]| KV, | KV,

\ A J
4 4

Tokens Slots



Log-free Deletion

» Delete an existing item

Delete

BOOEACH)




Log-free Deletion

» Delete an existing item

Delete

1(1

0

BN
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Modify the token in an
atomic write

KV, | KV,




Log-free Deletion

» Delete an existing item

Delete

BOOEACH)

Modify the token in an
atomic write

1{o|olo]| KV, | KV,

» Log-free insertion and log-free resizing
— Please find them in our paper



>

Consistency Guarantee for Update

If directly update an existing
key-value item Iin place
— Inconsistency on system failures

Update

1




Consistency Guarantee for Update

» If directly update an existing
- item in pl
key-value ite place Undate

— Inconsistency on system failures
> Astraightforward solutionis [1{1|0|o| kv, 1}

to use logging



Opportunistic Log-free Update

» Our scheme: check whether there is an empty slot in the bucket

storing the old item
— Yes: log-free update
— No: using logging

Update

1]11]|0(0 KvO

L (D Write KV1’ in an empty slot

1{1]o]o| KV, | KV, | KV,

(2 Modify the two tokens in
an atomic write

1lof1]o| KV, | KV, | KV,




Opportunistic Log-free Update

>
storing the old item
— Yes: log-free update
— No: using logging
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Performance Evaluation

» Both iIn DRAM and simulated PM platforms

— Quartz (Hewlett Packard)
A DRAM-based performance emulator for PM

» Comparisons
— Bucketized cuckoo hashing (BCH) [NSDI'13]
— PCM-friendly hash table (PFHT) [INFLOW’15]
— Path hashing [MSST'17]

— In PM, implement their persistent versions using our
oroposed log-free consistency guarantee schemes




Insertion Latency
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» Level hashing has the best insertion performance in both DRAM and NVM
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Update Latency
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» Opportunistic log-free update scheme reduces the update latency by 15%~
52%, i.e., speeding up the updates by 1.2X-2.1X



Search Latency
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» The search latency of level hashing is close to that of BCH, which is much
lower than PFHT and path hashing



Resizing Time
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» Level hashing reduces the resizing time by about 76%, i.e., speeding up
the resizing by 4.3 X



Concurrent Throughput
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[1] X. Li et al.. “Algorithmic improvements for fast concurrent cuckoo hashing”, Eurosys, 2014.

Concurrent level hashing:
Support multiple-reader multiple-
writer concurrency via simply
using fine-grained locking

Concurrent level hashing has
1.6 X - 2.1 X higher throughput
than libcuckoo?, due to locking
fewer slots for insertions
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Conclusion

» Traditional indexing technigues originally designed for
DRAM become inefficient in PM

» We propose level hashing, a write-optimized and high-
performance hashing index scheme for PM

— Write-optimized hash table structure
— Cost-efficient in-place resizing
— Log-free consistency guarantee

» 1.4X-3.0X speedup for insertion, 1.2 X-2.1X speedup
for update, and over 4.3 X speedup for resizing




Thanks! Q&A

(Poster #10)

Open-source code: https://github.com/Pfzuo/Level-Hashing



https://github.com/Pfzuo/Level-Hashing

