Neural Adaptive Content-aware Internet Video Delivery

Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, Dongsu Han

Observation on Current Video Ecosystem

Adaptive streaming has been widely deployed (a primary tool for improving user QoE)

Traditional Approaches

Optimizing ABR algorithms

Pensieve [SIGCOMM 17], MPC [SIGCOMM 15]

Choosing better servers, CDNs

Content Multihoming [SIGCOMM 12], VDN [SIGCOMM 15]

Leveraging centralized control plan

Video Control Plane [SIGCOMM 12], Pythease [NSDI 17]

Goal: Find how to best utilize the network resource

Limitation of Current Video Delivery

Video quality heavily depends on available bandwidth

Limitation of Current Video Delivery

Client computing power is scarcely utilized other than for decoding

Observation on Current Video Ecosystem

Standard codecs efficiently reduce redundancy inside GOP

Observation on Current Video Ecosystem

Standard codecs efficiently reduce redundancy inside GOP

Limitation of Current Video Delivery

Standard codecs lack any mechanisms for exploiting redundancy that occurs at large timescales

Key Observations on Deep Neural Network

1. Utilizes computing resource to enhance video quality

2. Trained and operate in large timescales (video)

Key Observations on Deep Neural Network

10

1. Utilizes computing resource to enhance video quality

2. Trained and operate in large timescales (video)

Key Observations on Deep Neural Network 1. Utilizes computing resource to enhance video quality Super-resolvition DNN Highghegoalition Ldww.respaliition Can we overcome the current limitations via DNN? 2 PS How much QoE improvement can we achieve? DNN 000 000 000

Existing Approach

0

0.45

SKSG

😭 0 🚳 2.5k

SC

(Pensieve – SIGCOMM 17)

2	2017	WORL	DC	HAN	MPI	DNS	SHIP P	VALS	-
		1	٨	.0	a	۸	e		
9	100	0/0/0	0	6	-	0	0/0/0	00	2
2	8.00	0/0/0	0	10	1	0	0/0/0	26	2
2	80	0/0/0	0	1	18	0	0/0/0	68	2
9	80	0/0/0	0	R	8	0	0/0/0	08	2
2	0	0/0/0	0	1	0	0	0/0/0	10	2

0

0:49

0

12K

6 2.5% 2 0 m

NAS: DNN-based Video Delivery

Apply super-resolution DNN on top of bitrate adaptation

NAS: Design Scope

1. Content: Video on demand (VOD)

2. Computing device: Desktop-class GPUs

NAS: Two Initial Challenges

1. DNN accuracy is unreliable for new content 🔂 Guarantee performance

15

2. Client must process DNN at real-time,

but computing power varies across space and time,

Client A: Entry-level GPU Client B: High-end GPU 1: SRCNN-ECCV14, 2:VDSR-CVPR 16, 3:EDSR-CVPRW 17

Key Design (1): Content-aware DNN

Challenge: Providing reliable DNN quality

Content-aware DNN delivers the reliable training accuracy instead of the unpredictable testing accuracy.

Training a content-aware super-resolution

17

Implication on Video Encoding

Key Design (2): Multiple Quality DNNs

Challenge: Enabling real-time super-resolution on heterogeneous clients

1. Provides multiple quality DNN options

Key Design (2): Multiple Quality DNNs

Challenge: Enabling real-time super-resolution on heterogeneous clients

1. Provides multiple quality DNN options

highest-quality running at real-time

3. Test-runs and selects the

NAS: Two Additional Challenges

A NAS streams video with a content-aware DNN, but ...

1. Takes long time to download and utilize a DNN incremental benefit

2. A DNN competes bandwidth with video integrate with ABR

Key Design (3): Scalable DNN

22

Challenge: Takes a long time to utilize a DNN

2. Download/Apply a partial DNN

1. Implement a scalable DNN (+ divide into similar-size chunks)

Key Design (4): Integrated ABR

Challenge: How to decide when to download a DNN

• Extends a reinforcement-learning based ABR (Pensieve [SIGCOMM17])

Goal: Maximize the total QoE over an entire video

Key Design (4): Integrated ABR

Challenge: How to decide when to download a DNN

• Extends a reinforcement-learning based ABR (Pensieve [SIGCOMM17])

Goal: Maximize the total QoE reflecting DNN-based quality enhancement

QoE metric = **DNN(bitrate)** - rebuffering – smoothness

Putting All Together: Implementation

NAS Player (dash.js) Δ1.7K LOC (8.8%) Integrated ABR 5.5K LOC

Evaluation

1) How much benefit does NAS deliver?

2) What are the cost and benefit of NAS ?

3) Does NAS effectively adapt to heterogeneous clients?

NAS vs. Existing Video Delivery : QoE

- **17.8 hours real-world network traces**: collected from 3G network and broadband (average bandwidth: 1.31Mbps)
- **27 YouTube videos**: 5-24 minutes, encoded at {400, 800, 1200, 2400, 4800}kbps
- Computing device: NVIDIA Titan Xp, DNN quality: Ultra-high
- Video player: Chromium browser, Video server: Apache server

Existing Approach

(Pensieve – SIGCOMM 17)

You Tubers REACT If You Don't Love Me At My... Memes AS SUGGESTED BY:

William Gardner 1 day ago React to if you don't love me at my, then you don't deserve me at my... Rizzzy264 3 days ago Youtubers react to if you don't love me at my...memes pist IIII Fall Avenger 1 week ago React to if you don't love me you don't deserve me memes

NAS

NAS vs. Existing Video Delivery : QoE

- **17.8 hours real-world network traces**: collected from 3G network and broadband (average bandwidth: 1.31Mbps)
- **27 YouTube videos**: 5-24 minutes, encoded at {400, 800, 1200, 2400, 4800}kbps
- Computing device: NVIDIA Titan Xp, DNN quality: Ultra-high
- Video player: Chromium browser, Video server: Apache server

NAS improves user QoE by 43.08% compared to Pensieve and 92.28% compared to BOLA using same amount of bandwidth.

NAS vs. Existing Video Delivery : Cost

When the total viewing reaches 30 hours (per minute of video), NAS CDN recoups the initial training cost.

Heterogeneous Clients

NAS adapts to heterogeneous devices,

and a device with higher computing power receives greater benefit.

Conclusion

- NAS presents a new type of QoE maximization & encoding via DNN
- NAS accommodates four key designs: Content-aware DNN, Multiple quality DNNs, Scalable DNN, Integrated ABR.
- NAS can improve user QoE or reduce the video delivery cost for CDN.