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Remote Direct Memory Access (RDMA)

Kernel bypassing network 

 Ultra low latency~(5us)  

Ultra high throughput 
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Gain interests from Academia & Industry   

Orders of magnitude improvements on distributed applications 

Available in the public cloud[1]

[1] https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available/

[2] Atomic compare and swap 

Offloading technology (one-sided) 

Bypassing CPU 

Read/Write, CAS[2] server’s memory 



One-sided READ(I) Two-sided RPC(♊)

On-going debate over how to use RDMA for TXs
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Performance ✓ ✖

#Round-trips >= 2 1

Coordinator

A’s store

Get(A)

RPC 
reply

RPC 
requestLookup A Read A



TX (e.g. OCC[1]) uses multiple phases for serializability & availability 

Each can be offloaded w one-sided primitive 

Transaction(TX)s are more complex

Coordinator

A’s primary

A’s backup

TX{ A = A + 1} Execution

Lock Check value

Validation Logging Commit

Write value
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}

Execute TX’s logic

}
Verify execution’s 
consistency

}

Reliably update the store

Read value CASs + READs
WRITEsWrite logWRITEs

[1] Optimistic concurrency control

LookupOne-sided READs
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Workloads

Protocols

OLTP workloads  

TPC-C, TPC-E, TATP, Smallbank, …

Impl on hardware devices 

One-sided vs. Two-sided, … 

CX3, CX4, CX5, ROCE

Protocols 

OCC, 2PL, SI, ….

Transaction(TX)s are more complex

Implements & Hardware



Well-tuned RDMA execution framework 

Representative RNICs (CX3 - CX5)

This work:  how to use RDMA for TXs
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Workloads

Protocol

Focus on OCC in this work  

Use phase-by-phase approach
Optimistic Concurrency Control
Widely used in 

Centralized 

Distributed

Representative OLTP workloads 

TPC-C, TPC-E, and Smallbank

Silo[SOSP’13] Foedus[SIGMOD’15]
…

FaRM[SOSP’15] TAPIR[SOSP’15]

…

Implements & Hardware



Phase-by-phase analysis is effective & useful
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Coordinator

A’s primary

A’s backup

TX{ A = A + 1} Execution

Lock Read

Validation Logging Commit

Write + UnlockWrite

OCC uses consecutive phases 

Better phase performance -> Better overall performance

Like query in graph; get() in 
key-value store

Like write a file  in 
distributed file system,etc

Read



Deconstructing TX with phase-by-phase analysis
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Execution

Lock Check value

Validation Logging Commit

Write value

Read index Read valueOne-sided READs CASs + READs
WRITEsWrite logWRITEs✔ ✔ ✔ ✔           DrTM+H No single primitive wins all the time !

OCC uses consecutive phases 

Better phase performance -> Better overall performance

https://github.com/SJTU-IPADS/drtmh 

https://github.com/SJTU-IPADS/drtmh


Outline

RDMA primitive-level analysis  

Phase-by-phase analysis for TX 

DrTM+H: Putting it all together
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System model & evaluation setup
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.  .  .  

100Gbps RDMA Network

Evaluation setup 

         16 X CPU RNIC Link layer

24 cores 2 * ConnectX-4 RNIC Infiniband

Client
TX req

TX req

READ/WRITE 
 REQs

Client

Symmetric model



Primitive analysis
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One-sided primitive 

Simple implementation 
(Native verbs  API) 

Optimized event loop 
(Async  communication)

Two-sided (RPC) 

FaSST RPC [OSDI’16] 

Fastest in our setting
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WRITE

CAS

Better

Client

Server
 Req  Reply
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103
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READ/WRITE is faster w known address

80

Two-sided

CAS is slower, but w sufficient performance 
 (48M per machine)



Passive ACK (PA)
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One-sided primitive 

Unsignaled  requests 

Two-sided primitive 

Batch replies (passively)

50

100

150

200

BetterThroughput (millon reqs/second)

Client

Server
Opt: when the reply is 
not on the critical path 
of the execution 

+PA  ReplyReq

+PA

READ 
WRITE

CAS
Two-sided

WRITE
Two-sided

90
103

48

80

133
160

Two-sided is faster w PA

PA usually not apply 
to READ/CAS

 Req  Reply



Towards phase-by-phase analysis

Workloads 

TPC-C/no: new-order  (distributed) 

Smallbank  

TPC-E/cp: custom-position
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Transactional system 

Built atop of our well-tuned execution framework (primitive analysis)



Lookup index cache✓

Execution = READs
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    One-sided (I) Two-sided (♊)

Coordinator

A’s store
Lookup Read A

TX{A = A + 1}

Optimization for one-sided primitive  

RDMA friendly store (e.g. DrTM-KV)  -> ~One-round lookup 

Index cache, cache hot items address  -> One-round (lookup + read)

One-sided (I) Cache

Read A RPC 
reply

RPC 
request

Exe Val Log Commit



Exe Val Log Commit
La

te
n

cy
 (m

s)

Throughput (millon TXs/second)

0

0.1

0.2

0.3

0 0.5 1 1.5 2

Two-sided One-sided One-sided/Cache
Better

Execution = READs
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Better

Two-sided (II): 

One-sided (I) 

One-sided (I) 
/ Cache 

Hybrid usage of ONE/Cache + Two-sided(miss)

Two-sided is faster w 
one round-trip

One-sided is faster w 
high CPU utilization

READs are better with 
one round-trip.

OverloadedUnderloaded



Validation = LOCKs + READs
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    One-sided (I) Two-sided (II)    One-sided (I) Two-sided (♊)

Coordinator

A’s store

TX{A = A + 1}

Optimization for one-sided primitive  ( for one round-trip ) 

Address known w the execution phase -> no need for lookup 

Locked value cannot be changed -> doorbell batch READs w CASs

Read RPC 
reply

RPC 
requestLookup CAS

Lock(A) Validate(A)

CAS + Read

Exe Val Log Commit
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La
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 (m
s)

Throughput (millon TXs/second)
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Two-sided One-sidedBetter

Better

Two-sided (II): 

One-sided (I) 

CAS + Read 
batched together

Validation is suitable for one-sided 
because of one round-trip

Exe Val Log CommitValidation = LOCKs + READs



RingBuffer

Logging = WRITEs
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One round-trip for one-sided primitive 

Ring buffer based log management [FaRM@NSDI’14] 

RNIC ack -> logging succeed (Totally bypassing CPU)

    One-sided (I) Two-sided (♊)

Coordinator

A’s backup

TX{A = A + 1}

RPC 
request

RPC 
reply

Write

Exe Val Log Commit



Logging = WRITEs
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Throughput (millon TXs/second) Better
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Better
Two-sided (II): 

One-sided (I) 

rep-factor=2

LOGGING can be always offloaded w 
one round-trip

LOGGING is better w one-sided

Exe Val Log Commit



Commit = WRITEs + UNLOCKs
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    One-sided (I) Two-sided (♊)

Coordinator

A’s store

TX{A = A + 1}

RPC 
request

RPC 
reply

One round-trip for one-sided primitive 

Address known w the execution phase -> no need for lookup 

Lookup

Adding passive ACK to both primitives 

Log succeed indicates TX’s commit 

Write A

Exe Val Log Commit

Unlocks implemented as WRITEs
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Throughput (millon TXs/second) Better
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Better

Two-sided (II): 

One-sided (I) 

+PATwo-sided w PA is faster

Two-sided w PA has higher peak 
throughput 

Commit RPC costs is small  

Two-sided saves CPU at sender

Exe Val Log CommitCommit = WRITEs + UNLOCKs



DrTM+H: Hybrid is better !
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Specific optimizations 

Passive ACK to the commit phase ( & log cleaning message) 

Speculative execution to send outstanding requests (OR)  from one TX

Execution(E) Validation(V) Logging (L) Commit (C)

           DrTM+H  I + ♊  I  I ♊

Hybrid choice

Hybrid system supports serializability & high availability



Performance & scalability on TPC-C/no
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Throughput (million TXs/second)
4%

DrTM+H scales well @ an (emulated) 80-node connections

rep-factor=2



End-to-end comparison against prior designs 
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BetterE V L C

FaSST-OCC[1] ♊ ♊ ♊ ♊
DrTM+R  I[w cache]  I  I  I

FaRM  I[w/o cache]  I+ ♊  I ♊
DrTM+H  I + ♊  I  I ♊

[1] FaSST uses a simplified OCC protocol compared to FaRM & DrTM+R.

In the same platform, the same protocol, but w different choices

+ Offload logging

+ Index cache 
+ Offload validation



Where do  the performance gains come from ? 
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Not a hard conclusion !

May depends on RNIC’s characteristic & network setting
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RNICS E V L C

CX3[1] ♊ ♊ ♊ ♊
CX4[2]  I + ♊  I  I ♊
CX4-ROCE[1]  I + ♊  I  I ♊
CX5[1][3]  I + ♊  I  I ♊
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[1]1-way replication used due to cluster limitation

[2] Main results in this talk

The results start from the primitive level analysis. 

[3]1-RNIC per machine, others uses 2



Evaluation summary

Offloading w one-sided improves the performance 

Especially w/o adding more round-trips 

Less affected by CPU load at the server
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One-sided primitive has good scalability on modern RNIC 

Especially when RNIC is not the bottleneck of the application 

Although one-sided primitive is restricted by hardware limitation



More: check our paper!

Optimized execution framework 

Results of large scale 

Modern RNIC has good scalability for one-sided primitive 

Read-only Transactions 

A hybrid scheme also wins 

TPC-E, Smallbank 

!28



Conclusions

The first systematic study on  

How to use RDMA for OCC TXs 

No single primitive is better! 

Depends on workload pattern & primitive analysis  

Execution framework & DrTM+H are available @

!29https://github.com/SJTU-IPADS/drtmh 

Thanks & QA

https://github.com/SJTU-IPADS/drtmh


Backups
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Improved overall systems
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FaSST’s simplified OCC protocol 

Adding  hybrid-schema for logging
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Smallbank workloads
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E V L C

CX3[1] ♊ ♊ ♊ ♊
CX4  I + ♊  I  I ♊
CX4-ROCE[1]  I + ♊  I  I ♊
CX5[1][2]  I + ♊  I  I ♊
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[1]1-way replication used due to cluster limitation

[2]1-RNIC per machine, others uses 2



RDMA based execution framework

Applied & based RDMA optimizations 

FaRM [NSDI’14,SOSP’15] 

Herd [NSDI’14] 

RDMA guideline [ATC’16] 

FaSST [OSDI’16]
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Others 

LITE [SOSP’2017] -> Further improve one-sided's scalability



Results using large connections
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16 node Emulate 80-node 



Comparison of two-sided implementations

FaSST RPC uses UD SEND/RECV
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RDMA enabled application

Load balance framework  

Distributed TXs 

Graph processing systems  

Distributed file system 
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