
Deconstructing RDMA-enabled
Distributed Transaction Processing:

Hybrid is Better!

Xingda Wei, Zhiyuan Dong, Rong Chen, Haibo Chen

Institute of Parallel and Distributed Systems (IPADS)
Shanghai Jiao Tong University

Remote Direct Memory Access (RDMA)

Kernel bypassing network

 Ultra low latency~(5us)

Ultra high throughput

!2

Gain interests from Academia & Industry

Orders of magnitude improvements on distributed applications

Available in the public cloud[1]

[1] https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available/

[2] Atomic compare and swap

Offloading technology (one-sided)

Bypassing CPU

Read/Write, CAS[2] server’s memory

One-sided READ(I) Two-sided RPC(♊)

On-going debate over how to use RDMA for TXs

!3

Performance ✓ ✖

#Round-trips >= 2 1

Coordinator

A’s store

Get(A)

RPC
reply

RPC
requestLookup A Read A

TX (e.g. OCC[1]) uses multiple phases for serializability & availability

Each can be offloaded w one-sided primitive

Transaction(TX)s are more complex

Coordinator

A’s primary

A’s backup

TX{ A = A + 1} Execution

Lock Check value

Validation Logging Commit

Write value

!4

}

Execute TX’s logic

}
Verify execution’s
consistency

}

Reliably update the store

Read value CASs + READs
WRITEsWrite logWRITEs

[1] Optimistic concurrency control

LookupOne-sided READs

!5

Workloads

Protocols

OLTP workloads

TPC-C, TPC-E, TATP, Smallbank, …

Impl on hardware devices

One-sided vs. Two-sided, …

CX3, CX4, CX5, ROCE

Protocols

OCC, 2PL, SI, ….

Transaction(TX)s are more complex

Implements & Hardware

Well-tuned RDMA execution framework

Representative RNICs (CX3 - CX5)

This work: how to use RDMA for TXs

!6

Workloads

Protocol

Focus on OCC in this work

Use phase-by-phase approach
Optimistic Concurrency Control
Widely used in

Centralized

Distributed

Representative OLTP workloads

TPC-C, TPC-E, and Smallbank

Silo[SOSP’13] Foedus[SIGMOD’15]
…

FaRM[SOSP’15] TAPIR[SOSP’15]

…

Implements & Hardware

Phase-by-phase analysis is effective & useful

!7

Coordinator

A’s primary

A’s backup

TX{ A = A + 1} Execution

Lock Read

Validation Logging Commit

Write + UnlockWrite

OCC uses consecutive phases

Better phase performance -> Better overall performance

Like query in graph; get() in
key-value store

Like write a file in
distributed file system,etc

Read

Deconstructing TX with phase-by-phase analysis

!8

Execution

Lock Check value

Validation Logging Commit

Write value

Read index Read valueOne-sided READs CASs + READs
WRITEsWrite logWRITEs✔ ✔ ✔ ✔ DrTM+H No single primitive wins all the time !

OCC uses consecutive phases

Better phase performance -> Better overall performance

https://github.com/SJTU-IPADS/drtmh

https://github.com/SJTU-IPADS/drtmh

Outline

RDMA primitive-level analysis

Phase-by-phase analysis for TX

DrTM+H: Putting it all together

!9

System model & evaluation setup

!10

. . .

100Gbps RDMA Network

Evaluation setup

 16 X CPU RNIC Link layer

24 cores 2 * ConnectX-4 RNIC Infiniband

Client
TX req

TX req

READ/WRITE
 REQs

Client

Symmetric model

Primitive analysis

!11

One-sided primitive

Simple implementation
(Native verbs API)

Optimized event loop
(Async communication)

Two-sided (RPC)

FaSST RPC [OSDI’16]

Fastest in our setting

30

60

90

120

Throughput (millon reqs/second)

READ
WRITE

CAS

Better

Client

Server
 Req Reply

90
103

48

READ/WRITE is faster w known address

80

Two-sided

CAS is slower, but w sufficient performance
 (48M per machine)

Passive ACK (PA)

!12

One-sided primitive

Unsignaled requests

Two-sided primitive

Batch replies (passively)

50

100

150

200

BetterThroughput (millon reqs/second)

Client

Server
Opt: when the reply is
not on the critical path
of the execution

+PA ReplyReq

+PA

READ
WRITE

CAS
Two-sided

WRITE
Two-sided

90
103

48

80

133
160

Two-sided is faster w PA

PA usually not apply
to READ/CAS

 Req Reply

Towards phase-by-phase analysis

Workloads

TPC-C/no: new-order (distributed)

Smallbank

TPC-E/cp: custom-position

!13

Transactional system

Built atop of our well-tuned execution framework (primitive analysis)

Lookup index cache✓

Execution = READs

!14

 One-sided (I) Two-sided (♊)

Coordinator

A’s store
Lookup Read A

TX{A = A + 1}

Optimization for one-sided primitive

RDMA friendly store (e.g. DrTM-KV) -> ~One-round lookup

Index cache, cache hot items address -> One-round (lookup + read)

One-sided (I) Cache

Read A RPC
reply

RPC
request

Exe Val Log Commit

Exe Val Log Commit
La

te
n

cy
 (m

s)

Throughput (millon TXs/second)

0

0.1

0.2

0.3

0 0.5 1 1.5 2

Two-sided One-sided One-sided/Cache
Better

Execution = READs

!15

Better

Two-sided (II):

One-sided (I)

One-sided (I)
/ Cache

Hybrid usage of ONE/Cache + Two-sided(miss)

Two-sided is faster w
one round-trip

One-sided is faster w
high CPU utilization

READs are better with
one round-trip.

OverloadedUnderloaded

Validation = LOCKs + READs

!16

 One-sided (I) Two-sided (II) One-sided (I) Two-sided (♊)

Coordinator

A’s store

TX{A = A + 1}

Optimization for one-sided primitive (for one round-trip)

Address known w the execution phase -> no need for lookup

Locked value cannot be changed -> doorbell batch READs w CASs

Read RPC
reply

RPC
requestLookup CAS

Lock(A) Validate(A)

CAS + Read

Exe Val Log Commit

!17

La
te

n
cy

 (m
s)

Throughput (millon TXs/second)

0

0.1

0.2

0.3

0.4

0 0.3 0.6 0.9 1.2 1.5

Two-sided One-sidedBetter

Better

Two-sided (II):

One-sided (I)

CAS + Read
batched together

Validation is suitable for one-sided
because of one round-trip

Exe Val Log CommitValidation = LOCKs + READs

RingBuffer

Logging = WRITEs

!18

One round-trip for one-sided primitive

Ring buffer based log management [FaRM@NSDI’14]

RNIC ack -> logging succeed (Totally bypassing CPU)

 One-sided (I) Two-sided (♊)

Coordinator

A’s backup

TX{A = A + 1}

RPC
request

RPC
reply

Write

Exe Val Log Commit

Logging = WRITEs

!19

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

Two-sided One-sided

Throughput (millon TXs/second) Better

La
te

n
cy

 (m
s)

Better
Two-sided (II):

One-sided (I)

rep-factor=2

LOGGING can be always offloaded w
one round-trip

LOGGING is better w one-sided

Exe Val Log Commit

Commit = WRITEs + UNLOCKs

!20

 One-sided (I) Two-sided (♊)

Coordinator

A’s store

TX{A = A + 1}

RPC
request

RPC
reply

One round-trip for one-sided primitive

Address known w the execution phase -> no need for lookup

Lookup

Adding passive ACK to both primitives

Log succeed indicates TX’s commit

Write A

Exe Val Log Commit

Unlocks implemented as WRITEs

!21

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

Two-sided One-sided One + PA Two + PA

Throughput (millon TXs/second) Better

La
te

n
cy

 (m
s)

Better

Two-sided (II):

One-sided (I)

+PATwo-sided w PA is faster

Two-sided w PA has higher peak
throughput

Commit RPC costs is small

Two-sided saves CPU at sender

Exe Val Log CommitCommit = WRITEs + UNLOCKs

DrTM+H: Hybrid is better !

!22

Specific optimizations

Passive ACK to the commit phase (& log cleaning message)

Speculative execution to send outstanding requests (OR) from one TX

Execution(E) Validation(V) Logging (L) Commit (C)

 DrTM+H I + ♊ I I ♊

Hybrid choice

Hybrid system supports serializability & high availability

Performance & scalability on TPC-C/no

!23

0

2

4

6

8

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Machines

Throughput (million TXs/second)
4%

DrTM+H scales well @ an (emulated) 80-node connections

rep-factor=2

End-to-end comparison against prior designs

!24

0

0.3

0.6

0.9

1.2

1.5

0 0.1 0.2 0.3 0.4 0.5

FaSST-OCC FaRM
DrTM+R DrTM+H

Throughput (millon TXs/second) Better
La

te
n

cy
 (m

s)

BetterE V L C

FaSST-OCC[1] ♊ ♊ ♊ ♊
DrTM+R I[w cache] I I I

FaRM I[w/o cache] I+ ♊ I ♊
DrTM+H I + ♊ I I ♊

[1] FaSST uses a simplified OCC protocol compared to FaRM & DrTM+R.

In the same platform, the same protocol, but w different choices

+ Offload logging

+ Index cache
+ Offload validation

Where do the performance gains come from ?

!25

0.08

0.15

0.23

0.30

0.15

0.30

0.45

0.60

Base (Two)

+ One READ

+ One Log

+ Index Cache

+ One VAL

+ PA + OR Base (Two)

+ One READ

+ One Log

+ Index Cache

+ One VAL

+ PA + OR

1 concurrent req / server 16 concurrent req / server

Peak throughput90th Latency (ms)

6%
22%

40% 42%
54%

63%

2%
14%17% 27%

39% 42%
phase-by-phase

phase-by-phase

Throughput (KTX/sec)

Not a hard conclusion !

May depends on RNIC’s characteristic & network setting

!26

RNICS E V L C

CX3[1] ♊ ♊ ♊ ♊
CX4[2] I + ♊ I I ♊
CX4-ROCE[1] I + ♊ I I ♊
CX5[1][3] I + ♊ I I ♊

0

0.3

0.6

0.9

1.2

1.5

0 0.11 0.22 0.33 0.44 0.55

FaSST-OCC FaRM
DrTM+R DrTM+H

Throughput (millon TXs/second)

La
te

n
cy

 (m
s)

0

0.3

0.6

0.9

1.2

1.5

0 0.11 0.22 0.33 0.44 0.55

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.3 0.6 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6

ConnectX-3 ConnectX-4

ConnectX-5ConnectX-4-ROCE

[1]1-way replication used due to cluster limitation

[2] Main results in this talk

The results start from the primitive level analysis.

[3]1-RNIC per machine, others uses 2

Evaluation summary

Offloading w one-sided improves the performance

Especially w/o adding more round-trips

Less affected by CPU load at the server

!27

One-sided primitive has good scalability on modern RNIC

Especially when RNIC is not the bottleneck of the application

Although one-sided primitive is restricted by hardware limitation

More: check our paper!

Optimized execution framework

Results of large scale

Modern RNIC has good scalability for one-sided primitive

Read-only Transactions

A hybrid scheme also wins

TPC-E, Smallbank

!28

Conclusions

The first systematic study on

How to use RDMA for OCC TXs

No single primitive is better!

Depends on workload pattern & primitive analysis

Execution framework & DrTM+H are available @

!29https://github.com/SJTU-IPADS/drtmh

Thanks & QA

https://github.com/SJTU-IPADS/drtmh

Backups

!30

Improved overall systems

!31

FaSST’s simplified OCC protocol

Adding hybrid-schema for logging

0

22.5

45

67.5

90

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Original-Fasst
Emulated-Fasst
Emulate-fasst-hybrid
Emulated-fasst+pa

Machines

Throughput (million TXs/second)

Smallbank workloads

!32

E V L C

CX3[1] ♊ ♊ ♊ ♊
CX4 I + ♊ I I ♊
CX4-ROCE[1] I + ♊ I I ♊
CX5[1][2] I + ♊ I I ♊

0

0.04

0.08

0.12

0.16

0.2

0 1 2 3

FaSST-OCC FaRM
DrTM+R DrTM+H

Throughput (millon TXs/second)

La
te

n
cy

 (m
s)

0

0.05

0.1

0.15

0 2 4 6

0

0.05

0.1

0 2 4 6 8
0

0.025

0.05

0.075

0.1

0 2 4 6

ConnectX-3 ConnectX-4

ConnectX-5ConnectX-4-ROCE

[1]1-way replication used due to cluster limitation

[2]1-RNIC per machine, others uses 2

RDMA based execution framework

Applied & based RDMA optimizations

FaRM [NSDI’14,SOSP’15]

Herd [NSDI’14]

RDMA guideline [ATC’16]

FaSST [OSDI’16]

!33

Others

LITE [SOSP’2017] -> Further improve one-sided's scalability

Results using large connections

!34

16 node Emulate 80-node

Comparison of two-sided implementations

FaSST RPC uses UD SEND/RECV

!35

RDMA enabled application

Load balance framework

Distributed TXs

Graph processing systems

Distributed file system

!36

