
Proving the correct execution of concurrent services
in zero-knowledge

Srinath Setty, Sebastian Angel,• Trinabh Gupta,* and Jonathan Lee

Microsoft Research •UPenn *UCSB

Software
verification

Proving correct
executions!=

Verifies that code obeys
a desired specification

(first three talks)

A cryptographic proof that
desired code was correctly

executed (this talk)

Neither subsumes the other

key-value store

clientId balance

1 200

2 500

3 100

Consider a cloud-hosted wallet service (e.g., Square, WeChat Pay)

API

• Issue (…)

• Transfer(…)

• Withdraw(…)

verifiers

recorded trace

Verify trace by replay

Issues with verifiability via record-and-replay

1. Sacrifices privacy: exposes requests and the internal state
to a verifier
• For example: account balances in the wallet app

2. Verification via replay is expensive
• Verifiers must reexecute all requests

• Recorded trace can be large  network costs are high

Verifiable state machines address both problems

key-value store

verifiers

recorded trace

Verify trace by replay

proofs

Verify proofs

• Proofs are zero-knowledge: they do not
reveal requests, responses, or the state

• Proofs are succinct: each proof is small and
verification is inexpensive

• If the service errs, verifiers output reject
(except for a small probability, <1/2128)

A verifiable state machine:

clientId balance

1 200

2 500

3 100

Prior work on verifiable state machines

• Pantry[SOSP13], Geppetto[S&P15], CTV[EUROCRYPT15], vSQL[S&P17], …

• The underlying theory dates back to 90s: Babai et al.[STOC91], …

• Pepper[HotOS11, NDSS12], CMT[ITCS12], Ginger[Security12], TRMP[HotCloud12]

• Zaatar[EuroSys13], Pinocchio[S&P13], Allspice[S&P13], SNARKs-for-C[CRYPTO13]

storage interfaces: key-value stores, etc.

cost reductions by 1020x

support stateful computations

Prior work suffers from two major issues

1. Producing proofs about storage operations is computationally expensive

Several seconds to minutes of CPU-time/operation

2. They can only produce proofs about sequential executions  each
request must be processed before the next

For the wallet service app (on a single CPU core):
Pantry [SOSP13] achieves < 0.15 requests/second

Geppetto [S&P15] achieves < 0.002 requests/second

Our system: Spice
• Features a new storage primitive: 29—2000x more efficient

• Supports concurrent request processing, with transactional semantics

• Includes a toolchain:

• We built three apps: a wallet service, payment network, and a dark pool

• Throughput: 488—1048 reqs/sec (512 CPU-cores)

• This is 18,000—685,000 higher throughput than prior work

the service
executable

the verifier
executableA C program

Rest of this talk

• Background

• Overview of Spice

• Experimental results

Background: Pantry[SOSP13]

Under Pantry, a service is expressed using:

• Arithmetic operations

• Bitwise operations

• Conditional control flow

• Volatile memory (with pointers)

• Loops (with bounded iterations)

subset of C storage primitives

• Key-value ops: get, put, etc.

Mechanics of Pantry [SOSP13] to produce proofs

compile
(translates C to constraints)

constraints

int f(int a, int b) {
return a*2 – b;

}

C program

(x1 ∙ 2) – x3 = 0

(x3 – x2) – x4 = 0

x1 – input a = 0

x2 – input b = 0

x4 – output = 0

translate

execute and produce proofs
(an argument protocol)

verifier

service

proof

build

Background: Pantry[SOSP13]

Under Pantry, a service is expressed using:

• Arithmetic operations

• Bitwise operations

• Conditional control flow

• Volatile memory (with pointers)

• Loops (with bounded iterations)

subset of C storage primitives

Value get(Key k) {
Value v = service_get(k);
return v;

}

clientId balance

1 200

2 500

3 100

key-value store
maintained by service

An attempt:

service supplies state

service could supply
incorrect values

Merkle trees provide the necessary building block

hash

data

(k1, v1) (k2,v2)

M

(k3, v3) (k4,v4)

N

R

Merkle
root

key-value store
maintained by the service

(k1, v1) (k2,v2)

N

R’

Value get(Key k, Root R) {
Value *v = service_get(k);

assert R’ == R; // fails for incorrect value
return v[0];

}

Issues with using Merkle trees for key-value stores

1. Cost of a get/put is logarithmic in the size of the state

2. The root of the tree serves as a contention point

 supports only sequential executions

Rest of this talk

• Background

• Overview of Spice

• Experimental results

Spice in a nutshell:

• Arithmetic and bitwise ops

• Conditionals, loops, memory

• …

subset of C storage primitives

read-
set

write-set

[Blum et al. FOCS91,
Clarke et al. ASIACRYPT03,

Arasu et al. SIGMOD17]

Succinct zero-knowledge proof

Compile and apply
argument protocol

read-set write-set

service’s state

Insert(k,v):
(k,v,0)

get(k)  v, 0

(k,v,0)
(k,v,0),
(k,v,1)

read-set is a subset of write-set

get(k)  w, 0

(k,w,0)
(k,v,0),
(k,w,1)

read-set is a not subset of write-set

Set-Hash = Set-Hash * Set-HashA,
B,

A B

= Set-Hash * Set-HashB A

write-
set

read-
set

struct set-root {
set-hash rs; // set-hash of read-set
set-hash ws;

}

service’s state An equivalent of Merkle root

Takeaways on set-based storage:

get, put add an element
to read-set and write-set

cost of a get, put is a
constant

service periodically proves
read-set \subset write-set

cost is linear in state size,
but amortized over a batch

non-conflicting set
operations commute

multiple writers and
concurrent request processing

mutual-exclusion: lock, unlock

set-based key-value store

transactions: one-shot, 2PL, …

C library (2,000 LOC)

Wallet
service

Payment
network

Dark
pool Apps (1,500 LOC)

We built transactions and apps atop set-based storage

Rest of this talk

• Background

• Overview of Spice

• Experimental results

Evaluation questions

1. How does Spice compare with the prior state-of-the-art?

2. What is the end-to-end performance of apps built with Spice?

Evaluation testbed:

Azure D64s_v3 instances: 32 CPUs, 2.4 Ghz Intel Xeon, 256 GB RAM,
running Ubuntu 17.04

(1) How does Spice compare to prior work?

get put

Pantry [SOSP13] 0.078 0.039

Pantry++ 0.15 0.076

Geppetto [S&P15] 0.002 0.002

Spice (1-thread) 3.6 3.6

Spice (512-threads) 1,366 1,370

A million key-value pairs

Transactions with a single operation, keys chosen with a uniform distribution

Metric: number of ops/second (i.e., proofs/sec)

(2) End-to-end performance with varying #CPUs

• TPS is 18,000—685,000x better than prior state-of-the-art
• Verification throughput: >1,000 proof verifications/sec (4 CPU-cores)

0

200

400

600

800

1000

1200

1400

issue transfer retire debit credit submit

Th
ro

u
gh

p
u

t
(r

eq
s/

se
c) 1 core 4 cores 16 cores 64 cores 256 cores 512 cores

Limitations of Spice

1. CPU-cost to produce proofs remains large (compared to
executions without proofs): >1000x

2. Spice amortizes the cost of producing a proof (that read-set
\subset write-set) over a batch of requests
• Introduces latency for producing proofs (7.5 minutes in our

experiments)

• Tunable, but lower latency increases CPU-costs

Summary
• Verifiable state machines add verifiability to services—without

compromising their privacy

• Spice is a substantial progress toward building verifiable state machines
• 18,000—685,000x better performance (over prior state-of-the-art)

• Spice supports realistic apps with thousands of transactions/sec

• We predict: Spice or a variant will be a key tool in building secure systems

