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| — Proving correct
’ executions

Verifies that code obeys A cryptographic proof that
a desired specification desired code was correctly
(first three talks) executed (this talk)

Neither subsumes the other



Consider a cloud-hosted wallet service (e.g., Square, WeChat Pay)
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Verify trace by replay



Issues with verifiability via record-and-replay

1. Sacrifices privacy: exposes requests and the internal state
to a verifier

 For example: account balances in the wallet apgp

Verifiable state machines address both problems

2. Verification via replay is expensive
* VVerifiers must reexecute all requests
* Recorded trace can be large =2 network costs are high



A verifiable state machine:

Coee clientld | balance
1 200
& , 500 * Proofs are zero-knowledge: they do not

_ reveal requests, responses, or the state
00565 3 100 G » F€SP ’

(eSP . key-value store
* Proofs are succinct: each proof is small and
recorded-traee| Proofs verification is inexpensive
u verifiersl * If the service errs, verifiers output reject
(except for a small probability, <1/21%8)
—

Verify proofs



Prior work on verifiable state machines

* The underlying theory dates back to 90s: Babai et al.[sToc91], ... \\

cost reductions by 102

e Zaataricurosys13], Pinocchiojsari3), Allspicesari3], SNARKs-for-C[crypPTO13]

* PepperiHotosii, Npss12], CMTitcs12], Ginger(security12], TRMP[HotCloud12] <}J/

support stateful computations

* Pantrysosr13], Geppettoisaris), CTV[eurocryprT15], VSQL[s&pP17], ... <}J

storage interfaces: key-value stores, etc.



Prior work suffers from two major issues

1. Producing proofs about storage operations is computationally expensive
Several seconds to minutes of CPU-time/operation

2. They can only produce proofs about sequential executions = each
request must be processed before the next

For the wallet service app (on a single CPU core):
Pantry [SOSP13] achieves < 0.15 requests/second
Geppetto [S&P15] achieves < 0.002 requests/second



Our system: Spice

* Features a new storage primitive: 29—2000x more efficient
e Supports concurrent request processing, with transactional semantics

* |ncludes a toolchain:

the service the verifier

A C program executable executable

=

We built three apps: a wallet service, payment network, and a dark pool

* Throughput: 488—1048 reqs/sec (512 CPU-cores)
* This is 18,000—685,000 higher throughput than prior work
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Rest of this talk

* Background
* Overview of Spice

* Experimental results



Background: Pantry[sospP13]

Under Pantry, a service is expressed using:

subset of C + storage primitives

* Arithmetic operations * Key-value ops: get, put, etc.

Bitwise operations

Conditional control flow

Volatile memory (with pointers)

Loops (with bounded iterations)



Mechanics of Pantry [sosP13] to produce proofs

compile execute and produce proofs
(translates C to constraints) (an argument protocol)
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Background: Pantry[sospP13]

Under Pantry, a service is expressed using:

subset of C + storage primitives

* Arithmetic operations

Bitwise operations

Conditional control flow

Volatile memory (with pointers)

Loops (with bounded iterations)



An attempt:
key-value store
maintained by service

balance
Value get(Key k) { service supplies state 00
Value v = service_get(k); . , 500
return v; 3 100

service could supply

incorrect values




Merkle trees provide the necessary building block

Value get(Key k, Root R) { ‘ hash
Value *v = service_get(k); Merkle B data

% root
HB°

assert R’ == R; // fails for incorrect value
return v[0];

}

key-value store
maintained by the service




Issues with using Merkle trees for key-value stores

1. Cost of a get/put is logarithmic in the size of the state

2. The root of the tree serves as a contention point
—> supports only sequential executions



Rest of this talk

* Background
* Overview of Spice

* Experimental results



Spice in a nutshell:
+

read-
set

write-set

e Arithmetic and bitwise ops

* Conditionals, loops, memory
5 ? )

Compile and apply
argument protocol

[Blum et al. FOCS91,
Clarke et al. ASIACRYPTO3,
Arasu et al. SIGMOD17]

Succinct zero-knowledge proof



service’s state
read-set Write-set

Insert(k V): @ .

get(k) 2> w, 0
get(k) 2 v, 0

read-set is a not subset of write-set read-set is a subset of write-set



service’s state An equivalent of Merkle root

struct set-root {
read- set-hash rs: // set-hash of read-set
set
set-hash ws;

}

Set-Hash [J Set-Hash

Set-Hash

] * Set-Hash f\
* Set-Hash @

® &



Takeaways on set-based storage:

get, put add an element
to read-set and write-set

service periodically proves
read-set \subset write-set

non-conflicting set
operations commute

—

m—)

m—)

cost of a get, putis a
constant

cost is linear in state size,
but amortized over a batch

multiple writers and
concurrent request processing



We built transactions and apps atop set-based storage

Wallet Payment Dark ‘_
service network pool Apps (1,500 LOC)

transactions: one-shot, 2PL, ...

mutual-exclusion: lock, unlock — Clibrary (2,000 LOC)

set-based key-value store



Rest of this talk

* Background
* Overview of Spice

* Experimental results



Evaluation questions

1. How does Spice compare with the prior state-of-the-art?
2. What is the end-to-end performance of apps built with Spice?

Evaluation testbed:

Azure D64s V3 instances: 32 CPUs, 2.4 Ghz Intel Xeon, 256 GB RAM,
running Ubuntu 17.04



(1) How does Spice compare to prior work?

A million key-value pairs
Transactions with a single operation, keys chosen with a uniform distribution

Metric: number of ops/second (i.e., proofs/sec)

Pantry [sosp13] 0.078 0.039
Pantry++ 0.15 0.076
Geppetto [s&Pi15] 0.002 0.002
Spice (1-thread) 3.6 3.6

Spice (512-threads) 1,366 1,370



(2) End-to-end performance with varying #CPUs
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issue transfer retire debit credit submit

lcore M4cores M16cores M64cores HM256cores M512 cores

Throughput (reqs/sec

e TPSis 18,000—685,000x better than prior state-of-the-art
* Verification throughput: >1,000 proof verifications/sec (4 CPU-cores)



Limitations of Spice

1. CPU-cost to produce proofs remains large (compared to
executions without proofs): >1000x

2. Spice amortizes the cost of producing a proof (that read-set
\subset write-set) over a batch of requests

* Introduces latency for producing proofs (7.5 minutes in our
experiments)

* Tunable, but lower latency increases CPU-costs



Summary

* Verifiable state machines add verifiability to services—without
compromising their privacy

* Spice is a substantial progress toward building verifiable state machines

* 18,000—685,000x better performance (over prior state-of-the-art)
 Spice supports realistic apps with thousands of transactions/sec

* We predict: Spice or a variant will be a key tool in building secure systems



