PRETZEL: Opening the Black Box of
ML Prediction Serving Systems

Yunseong Lees, Alberto Scolarir, Byung-Gon Chuns,
Marco Domenico Santambrogior, Markus Weimer™, Matteo Interlandim

GHe SEOUL

'Y NATIONAL

Wy,
aw 1y,
\\\\\\\ //,/,//
7 %
NP —~
S « ()=
) == A = o
5 (@) e
=) P "l
LS -] S
= :‘1. ;,; “T» \/ 5
Z AN
7,03 MILANO 1863
K &

AN
\

0
Ao @X UNIVERSITY

Machine Learning Prediction Serving

1. Models are learned from data Performance goal:
1) Low latency

2. Models are deployed and served together 2) High throughput

3) Minimal resource usage

(@) i
H Learn | Model . Deploy
@ :

——— e e e e e o e o e o e e e e e e =] - T S S S O B SN BN BN B SN B EEE B M e e e e e e el

Training) Prediction serving

0932
ey’

Users

ML Prediction Serving Systems: Replication

State-of-the-art Result
caching ensemble
¢ Clipper TFGSerlving ML.Net —Request —— ~
“riselqb a8 Microsoft
oo Batching y
“Pretzel is tasty” : .’ Text
y— " Analysis
 Assumption: models are black box .’ @
* Re-use the same code in training phase g Yy

cat Imag.e.
= - Recognition
* Encapsulate all operations car *

into a function call (e.g., predict())
_ /

* Apply external optimizations Prediction Serving
System

How do Models Look inside Boxes?

Pretzel is tasty

- ©vs. ®

(positive vs. negative)

<Example: Sentiment Analysis> w

(text)

=% Microsoft

How do Models Look inside Boxes?
DAG of Operators

o e e = e

Predictor

Logistic

Pretzel is tasty .
Regressior

N e o e = T

<Example: Sentiment Analysis>

B% Microsoft

5

How do Models Look inside Boxes?
DAG of Operators - N
[Extract l --

Compute

N-grams final score

Pretzel is tasty

SpI|t text - Merge two
|nto tokens (vectors |

<Example: Sentiment AnaIyS|s>

™ Microsoft

6

Many Models Have Similar Structures

* Many part of a model can be re-used in other models

e Customer personalization, Templates, Transfer Learning i ;:

* |dentical set of operators with different parameters *

T @

B .
, mm Microsoft

Outline

* Limitations of Black Box Approaches

* PRETZEL: White-box Prediction Serving System
* Evaluation

* Conclusion

Limitation 1: Resource Waste

* Resources are isolated across Black boxes

1. Unable to share memory space
=>» Waste memory to maintain duplicate objects
(despite similarities between models)

2. No coordination for CPU resources between boxes
=» Serving many models can use too many threads

-)
n

o

i
./

machine

Limitation 2: Inconsideration for Ops” Characteristics

1. Operators have different performance characteristics
 Concat materializes a vector
* LogReg takes only 0.3% (contrary to the training phase)

2. There can be a better plan if such characteristics are considered
e Re-use the existing vectors
* Apply in-place update in LogReg

M CharNgram [JWordNgram [[Concat W LogReg " Others
0.3

S .
0% 20% 40% 60% 80% 100%

Latency breakdown
10

™ Microsoft

Limitation 3: Lazy Initialization

* ML.Net initializes code and memory lazily (efficient in training phase)

* Run 250 Sentiment Analysis models 100 times
=>» cold: first execution / hot: average of the rest 99

* Long-tail latency in the cold case

e Code analysis, Just—in-time (JIT) compilation, memory allocation, etc
* Difficult to provide strong Service-Level-Agreement (SLA)

100

0.61
o
e N =
a

Latency (ms, log-scaled) WE \ricrosoft

Outline

* PRETZEL: White-box Prediction Serving System
* Evaluation
* Conclusion

PRETZEL: White-box Prediction Serving

*\We analyze models to optimize the internal execution

*We let models co-exist on the same runtime,
sharing computation and memory resources

*\We optimize models in two directions:

1. End-to-end optimizations
2. Multi-model optimizations

End-to-End Optimizations

Optimize the execution of individual models from start to end

1. [Ahead-of-time Compilation]

Compile operators’ code in advance
- No JIT overhead

2. [Vector pooling]
Pre-allocate data structures
- No memory allocation on the data path

Multi-model Optimizations

Share computation and memory across models

1. [Object Store]
Share Operators parameters/weights
- Maintain only one copy
2. [Sub-plan Materialization]
Reuse intermediate results computed by other models

— Save computation

System Components

3. Runtime: Execute inference queries

1. Flour: Intermediate Representation

Runtlme
var fContext = ...;
var Tokenizer = ...;
return fPrgm.Plan(); ObJeCt Scheduler
Store
2. Oven: Compiler/Optimizer 4. FrontEnd: Handle user requests

‘l' —
" [FrontEnd }

‘s

16

Prediction Serving with PRETZEL

1. Offline . |
* Analyze structural information of models J Model ’
* Build ModelPlan for optimal execution SUELIZE @ N
* Register ModelPlan to Runtime [I\lllj?adnel } Register e
\ 4
2. Online
» Handle prediction requests @ ®

Y,
* Coordinate CPU & memory resources :.“ Frontend [

Runtime

17

System Design: Offline Phase

1. Translate Model into Flour Program

<Model> <Flour Program>
var fContext = new FlourContext(...)
S) var tTokenizer = fContext.CSV
.FromText (fields, fieldsType, sep)
.Tokenize () ;

var tCNgram = tTokenizer.CharNgram (numCNgrms,
var tWNgram = tTokenizer.WordNgram (numWNgrms,
var fPrgrm = tCNgram

.Concat (tWNgram)
Concat .ClassifierBinarylLinear (cParams) ;

return fPrgrm.Plan();

18

Rule-based
optimizer

System Design: Oftline Phase

2. Oven optimizer/compiler build Model Plan | & ndedias

& Remove Concat

<Flour Program>

var fContext = new FlourContext(...) <>

var tTokenizer = fContext.CSV
.FromText (fields, fieldsType, sep)
.Tokenize () ; Group ops

into stages
var tCNgram = tTokenilizer.CharNgram (numCNgrms, ...)

var tWNgram = tTokenilizer.WordNgram (numWNgrms, ...)
var fPrgrm = tCNgram
.Concat (tWNgram)
.ClassifierBinaryLinear (cParams) ;

~oe ~oe

AModel Plan>
Logical DAG - ___

return fPrgrm.Plan ()

19

Rule-based
optimizer

System Design: Oftline Phase

2. Oven optimizer/compiler build Model Plan | & ndedias

& Remove Concat

<F|0ur Program> e.g., Dictionary,
var fContext = new FlourContext(...) N-gram Length _“<:>>

var tTokenizer = fContext.CSV
.FromText (fields, fieldsTlpe,
.Tokenize () ;

sSe

Group ops
into stages

var tCNgram = tTokehizer.ChagNgram (numCNgrmg, ...
var tWNgram = tTokgnizer.WoydNgp N Vi AMOdEI Plan>
var fPrgrm = tCNgra\
Logical DAG - ___
return fPrgrm.Plan Parameters
e.g., dense vs. sparse, Statistics
maximum vector size

System Design: Offline Phase

3. Model Plan is registered to Runtime

Logical
AModeI Plan> ogical Stages Physical Stages

Model1 » o1 <

Logical DAG Q0 O xX
A® AO
Parameters
. - \ N\ AN
Statistics Object Store?
~~m
T W

1. Store parameters & — _2j Find the. Ll
efficient physical impl.

using &

mapping between
logical stages -

System Design: Offline Phase

3. Model Plan is registered to Runtime

<Model Plan>

Logical DAG
Parameters

Statistics

Logical Stages
Modell

3. Register selected
physical stages to

Catalog

1. Store parameters &

mapping between
logical stages

OE)ject SEore?
~m
\‘- \-

/

Physical Stages Catalog
S1 S2
» o e @A
@ x X

N-gram length
1vs.3

2. Find the most
efficient physical impl.
using &

Sparse vs. Dense

System Design: Online Phase

Logical Stages
Modell Model2

2. Instantiate
physical stages

along with
SEICINEIES

4. Send result back

to Client

<Modell, “Pretzel is tasty”> \ age

1. When a prediction = = A1 .

request arrives

Runtime

23 @ .:

Outline

e Evaluation
* Conclusion

Evaluation

* Q. How PRETZEL improves performance over black-box approaches?
* in terms of latency, memory and throughput

* 500 Models from Microsoft Machine Learning Team
e 250 Sentiment Analysis (Memory-bound)
e 250 Attendee Count (Compute-bound)

e System configuration
* 16 Cores CPU, 32GB RAM
 Windows 10, .Net core 2.0

Evaluation: Latency

* Micro-benchmark (No server-client communication)
e Score 250 Sentiment Analysis models 100 times for each

* Compare ML.Net vs. PRETZEL 02 08
e I G oY
O “~ 1
S MLNee w0 £l 8| w
-1 1
P99 (hot) 0.6 02 Zeo. S) -
~ I— 1
L L i i
P99 (cold) 8.1 0.8 S 40 o 5 5 !
Worst (cold) 280.2 6.2 ol I/J 5 i _

[E]
o
=

O , A , ———
102 10-1 10°
Latency (ms, log-scaled)

26

Evaluation: Memory

* Measure Cumulative Memory Usage after loading 250 models
* Attendee Count models (smaller size than Sentiment Analysis)

4 settings for Comparison

% 32GB] :
ECR Gl © coce| Muneclpeer 276E |
jects | Runtime >] e 3.7GB
ML.Net + Clipper gD] R
oV 1GB: W,
ML.Net v s @ R z
02 |/
PRETZEL without Y 2= I/
ObjectStore = 0.1GBy ;
PRETZEL v v £ === PRETZEL . better
50 100 150 200 250

Number of pipelines

27

Evaluation: Throughput

* Micro-benchmark
e Score 250 Attendee Count models 1000 times for each
* Request 1000 queries in a batch
* Compare ML.Net vs. PRETZEL

?‘.’? Close to ideal
315 scalability
510
o
More results S s
in the paper! S e : ~ | petter
Pap Fo12 a4 8 13

Num. CPU Cores

28

Conclusion

 PRETZEL is the first white-box prediction serving system for ML pipelines

* By using models’ structural info, we enable two types of optimizations:
* End-to-end optimizations generate efficient execution plans for a model
* Multi-model optimizations let models share computation and memory resources

* Our evaluation shows that PRETZEL can improve performance compared to
Black-box systems (e.g., ML.Net)
* Decrease latency and memory footprint
* Increase resource utilization and throughput

PRETZEL: a White-Box ML Prediction Serving System

Thank you!
Questions?

SEOUL Z5 poLITECNICO

BB \licrosoft
RSy LA TMILANO 1863 B ICFrOSO
UNIVERSITY ”’o,,,,;:”:::\“\“ S

30

