
ZebRAM: Comprehensive and Compatible Software
Protection against Rowhammer Attacks

Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis Andriesse,
Herbert Bos, Cristiano Giuffrida and Kaveh Razavi

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

● Existing defenses are ineffective

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

● Existing defenses are ineffective
○ Hardware solutions like ECC, TRR are found to ineffective

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

● Existing defenses are ineffective
○ Hardware solutions like ECC, TRR are found to ineffective (Cojocar et. al S&P’19, Gruss et al.

Blackhat’18)

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

● Existing defenses are ineffective
○ Hardware solutions like ECC, TRR are found to ineffective (Cojocar et. al S&P’19, Gruss et al.

Blackhat’18)
○ ANVIL - CPU performance counters to detect Rowhammer attack (AWEKE et. al ASPLOS’16)

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

● Existing defenses are ineffective
○ Hardware solutions like ECC, TRR are found to ineffective (Cojocar et. al S&P’19, Gruss et al.

Blackhat’18)
○ ANVIL - fails against DMA-based attacks (Van der Veen et al. CCS’17)

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

● Existing defenses are ineffective
○ Hardware solutions like ECC, TRR are found to ineffective (Cojocar et. al S&P’19, Gruss et al.

Blackhat’18)
○ ANVIL - fails against DMA-based attacks (Van der Veen et al. CCS’17)
○ CATT - isolates different security domains using guard rows (Brasser et al. SEC’17)

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

● Existing defenses are ineffective
○ Hardware solutions like ECC, TRR are found to ineffective (Cojocar et. al S&P’19, Gruss et al.

Blackhat’18)
○ ANVIL - fails against DMA-based attacks (Van der Veen et al. CCS’17)
○ CATT - fails because different security domains share memory (Gruss et al. S&P’18)

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

● Existing defenses are ineffective
○ Hardware solutions like ECC, TRR are found to ineffective (Cojocar et. al S&P’19, Gruss et al.

Blackhat’18)
○ ANVIL - fails against DMA-based attacks (Van der Veen et al. CCS’17)
○ CATT - fails because different security domains share memory (Gruss et al. S&P’18)

● ZebRAM

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

● Existing defenses are ineffective
○ Hardware solutions like ECC, TRR are found to ineffective (Cojocar et. al S&P’19, Gruss et al.

Blackhat’18)
○ ANVIL - fails against DMA-based attacks (Van der Veen et al. CCS’17)
○ CATT - fails because different security domains share memory (Gruss et al. S&P’18)

● ZebRAM
○ The first comprehensive and compatible software-based solution ...

2

Motivation

● Rowhammer -- a DRAM defect that allows an attacker to exploit a system
○ Even if there is no software bug (and formally verified)
○ 87% of DDR3 DIMMs are vulnerable (Kim et al. ISCA’14)
○ DDR4 also contain this bug (Van der Veen et al. CCS’17)

● Existing defenses are ineffective
○ Hardware solutions like ECC, TRR are found to ineffective (Cojocar et. al S&P’19, Gruss et al.

Blackhat’18)
○ ANVIL - fails against DMA-based attacks (Van der Veen et al. CCS’17)
○ CATT - fails because different security domains share memory (Gruss et al. S&P’18)

● ZebRAM
○ The first comprehensive and compatible software-based solution ...
○ … to defend against this hardware bug. 2

Rowhammer bug

3

Rowhammer bug

● DRAM rows consists of DRAM cells

3

Rowhammer bug

● DRAM rows consists of DRAM cells

● Each cell can store one bit information

3

Rowhammer bug

● DRAM rows consists of DRAM cells

● Each cell can store one bit information

● Up on proximate access, DRAM cells
leak charge to neighbouring cells …

Aggressor row

3

Rowhammer bug

● DRAM rows consists of DRAM cells

● Each cell can store one bit information

● Up on proximate access, DRAM cells
leak charge to neighbouring cells …

Aggressor row

3

Rowhammer bug

● DRAM rows consists of DRAM cells

● Each cell can store one bit information

● Up on proximate access, DRAM cells
leak charge to neighbouring cells …

3

Aggressor row

Rowhammer bug

● DRAM rows consists of DRAM cells

● Each cell can store one bit information

● Up on proximate access, DRAM cells
leak charge to neighbouring cells …

3

Aggressor row

Rowhammer bug

● DRAM rows consists of DRAM cells

● Each cell can store one bit information

● Up on proximate access, DRAM cells
leak charge to neighbouring cells …

3

Aggressor row

Rowhammer bug

● DRAM rows consists of DRAM cells

● Each cell can store one bit information

● Up on proximate access, DRAM cells
leak charge to neighbouring cells …

● … and induce bit flips in them: (1 => 0)
or (0 => 1)

Victim row

3

Bit flips

Aggressor row

Aggressor row

Victim row

Rowhammer bug

● DRAM rows consists of DRAM cells

● Each cell can store one bit information

● Up on proximate access, DRAM cells
leak charge to neighbouring cells …

● … and induce bit flips in them: (1 => 0)
or (0 => 1)

● Rowhammer bug

Victim row

3

Bit flips

Aggressor row

Aggressor row

Victim row

How is this a security problem?

An attacker can flips a bit in:

● Cryptographic key, page table entry in kernel e.t.c.
● … to compromise the system.

4

How is this a security problem?

An attacker can flips a bit in:

● Cryptographic key, page table entry in kernel e.t.c.
● … to compromise the system.

Two important points to note:
1. Attacker should able to read very fast

4

How is this a security problem?

An attacker can flips a bit in:

● Cryptographic key, page table entry in kernel e.t.c.
● … to compromise the system.

Two important points to note:
1. Attacker should able to read very fast
2. Can flip a bit on its neighboring row

4

Solution for many security problems

5

Solution for many security problems

Isolation

5

Solution for many security problems

Isolation

To protect a process A from writing to process B’s memory:

A B

5

Solution for many security problems

Isolation

To protect a process A from writing to process B’s memory:

➢ We isolate them using virtual address space

A B

Virtual Address

5

Isolation approach 1

1. Separate security domains using guard rows

6

Isolation approach 1

1. Separate security domains using guard rows

User space

Kernel space

6

Isolation approach 1

1. Separate security domains using guard rows

User space

Kernel space

Guard Rows

6

Isolation approach 1

1. Separate security domains using guard rows

User space

Kernel space

Guard Rows

6

x x x x

Isolation approach 1

1. Separate security domains using guard rows

CATT uses this approach (Brasser et al. SEC’17)
User space

Kernel space

Guard Rows

6

Isolation approach 1

1. Separate security domains using guard rows

CATT uses this approach (Brasser et al. SEC’17)

Limitation :

➢ Security domains share memory (pagecache)
(Gruss et al. S&P’18)

User space

Kernel space

Guard Rows

6

Isolation approach 2

1. Separate security domains using guard rows
2. Isolate security sensitive data using guard rows

An application can use a custom memory allocator:

➢ Allocate memory protected by guard rows

7

Isolation approach 2

1. Separate security domains using guard rows
2. Isolate security sensitive data using guard rows

An application can use a custom memory allocator:

➢ Allocate memory protected by guard rows
➢ for storing sensitive data (Tatar et al. ATC’18)

Sensitive data

DRAM address space

7

Isolation approach 2

1. Separate security domains using guard rows
2. Isolate security sensitive data using guard rows

An application can use a custom memory allocator:

➢ Allocate memory protected by guard rows
➢ for storing sensitive data (Tatar et al. ATC’18)

Limitation:

➢ Application specific defense

Sensitive data

DRAM address space

7

ZebRAM
Protect the whole system transparently..

8

ZebRAM
Protect the whole system transparently..
...by placing guard row between every data row!

8

ZebRAM
Protect the whole system transparently..
...by placing guard row between every data row!

DRAM address space

8

ZebRAM
Protect the whole system transparently..
...by placing guard row between every data row!

Data row

Data row

Data row

Data row

Data row

Data row

Guard row

Guard row

Guard row

Guard row

Guard row

DRAM address space DRAM address space

8

ZebRAM
Protect the whole system transparently..
...by placing guard row between every data row!

Data row

Data row

Data row

Data row

Data row

Data row

Data region

Guard region

Guard row

Guard row

Guard row

Guard row

Guard row

DRAM address space

8

DRAM address space

ZebRAM
Protect the whole system transparently..
...by placing guard row between every data row!

Data row

Data row

Data row

Data row

Data row

Data row

Data region

Guard region

Guard row

Guard row

Guard row

Guard row

Guard row

DRAM address space

8

DRAM address space

X

XX

X

ZebRAM
Protect the whole system transparently..
...by placing guard row between every data row!

Data row

Data row

Data row

Data row

Data row

Data row

Safe region

Unsafe region

Guard row

Guard row

Guard row

Guard row

Guard row

DRAM address space

8

DRAM address space

Data region

X

XX

X

ZebRAM
Protect the whole system transparently..
...by placing guard row between every data row!

Data row

Data row

Data row

Data row

Data row

Data row

Safe region
for OS

Unsafe region

Guard row

Guard row

Guard row

Guard row

Guard row

DRAM address space

8

DRAM address space

ZebRAM
Protect the whole system transparently..
...by placing guard row between every data row!

Data row

Data row

Data row

Data row

Data row

Data row

Safe region
for OS

Unsafe region

Guard row

Guard row

Guard row

Guard row

Guard row

DRAM address space

Basic ZebRAM

8

DRAM address space

How do we achieve these?

9

ZebRAM Challenge 1

1. We want to isolate every row in DRAM using guard rows

Physical address
space

DRAM address space

Physical address
space

DRAM address space Physical address
space

Safe region

Unsafe region

10

ZebRAM Challenge 1

1. We want to isolate every row in DRAM using guard rows
○ Map physical address to its location in DRAM (DRAM address)

Physical address
space

DRAM address space

Physical address
space

DRAM address space Physical address
space

Safe region

Unsafe region

10

Challenge 1 : Physical address to DRAM address

Virtual address to Physical address:

11

Challenge 1 : Physical address to DRAM address

Physical address to DRAM address

12

Challenge 1 : Physical address to DRAM address

➢ DRAM organized in:

channel

12

Challenge 1 : Physical address to DRAM address

➢ DRAM organized in:

channel, DIMM

12

Challenge 1 : Physical address to DRAM address

➢ DRAM organized in:

channel, DIMM, rank

12

Challenge 1 : Physical address to DRAM address

➢ DRAM organized in:

channel, DIMM, rank, bank

12

Challenge 1 : Physical address to DRAM address

➢ DRAM organized in:

channel, DIMM, rank, bank, row

12

Challenge 1 : Physical address to DRAM address

➢ DRAM organized in:

channel, DIMM, rank, bank, row, column

12

Challenge 1 : Physical address to DRAM address

To understand this mapping:

13

Challenge 1 : Physical address to DRAM address

To understand this mapping:

➢ Previous reverse-engineering work (Pessl et al. SEC’16)

13

Challenge 1 : Physical address to DRAM address

To understand this mapping:

➢ Previous reverse-engineering work (Pessl et al. SEC’16)
➢ More reverse engineering

13

Challenge 1 : Physical address to DRAM address

To understand this mapping:

➢ Previous reverse-engineering work (Pessl et al. SEC’16)
➢ More reverse engineering

DRAM address translation library, RAMSES

13

Challenge 1 : Physical address to DRAM address

To understand this mapping:

➢ Previous reverse-engineering work (Pessl et al. SEC’16)
➢ More reverse engineering

DRAM address translation library, RAMSES
Memory allocator, ALIS (Tatar et al. ATC’18)

13

Challenge 1 : Physical address to DRAM address

To understand this mapping:

➢ Previous reverse-engineering work (Pessl et al. SEC’16)
➢ More reverse engineering

DRAM address translation library, RAMSES
Memory allocator, ALIS (Tatar et al. ATC’18)

13

Challenge 1 : Physical address to DRAM address

To understand this mapping:

➢ Previous reverse-engineering work (Pessl et al. SEC’16)
➢ More reverse engineering

DRAM address translation library, RAMSES
Memory allocator, ALIS (Tatar et al. ATC’18)

For ZebRAM, we extended ALIS…
...to allocate memory in zebra pattern.

13

ZebRAM Challenge 1

1. Translating physical addresses to DRAM addresses and placing guard rows

Physical address
space

Physical address
space

DRAM address space

RAMSES
+ ALIS*

14

Challenge 2 : Re-mapping physical address space

2. Transparently re-map the data rows and guard rows as two contiguous memory region

Physical address
space

Physical address
space

DRAM address space

RAMSES
+ ALIS

Physical address space
15

Challenge 2 : Re-mapping physical address space

2. Transparently re-map the data rows and guard rows as two contiguous memory region

Physical address
space

Physical address
space

DRAM address space

RAMSES
+ ALIS

Physical address space
15

Safe region
for OS

Unsafe region

Challenge 2 : Re-mapping physical address space

We use virtualization feature like Intel (VT-x) …
…to transparently re-map the guard and data rows as two contiguous memory region

DRAM address space

RAMSES
+ ALIS

Physical address
space

VT-x

16

Physical address
space

Safe region
for OS

Unsafe region

ZebRAM Challenge 3

3. Utilizing the unsafe region securely and efficiently

DRAM address space Physical address
space

Safe region
for OS

Unsafe region

VT-
x

RAMSES
+ ALIS

Physical address
space

17

Challenge 3 : Utilizing unsafe region

Securely means two things here :

Physical address
space

Unsafe region

18

Safe region
for OS

Challenge 3 : Utilizing unsafe region

Securely means two things here :
1. Handle bit flips that may occur on unsafe region

Physical address
space

Unsafe region

18

x
x

x

x

Safe region
for OS

Challenge 3 : Utilizing unsafe region

Securely means two things here :
1. Handle bit flips that may occur on unsafe region

ZebRAM implements a integrity manager that uses:
1. Hash verification (SHA-256)
2. Error correction code (ECC)

Physical address
space

Unsafe region

18

Integrity Manager

Safe region
for OS

Challenge 3 : Utilizing unsafe region

Securely means two things:
1. Handle bit flips that may occur on unsafe region

2. Protect the unsafe region from illegal bit flips

Physical address
space

Unsafe region

19

Safe region
for OS

Challenge 3 : Utilizing unsafe region

Securely means two things:
1. Handle bit flips that may occur on unsafe region

2. Protect the unsafe region from illegal bit flips

Physical address
space

Unsafe region

19

x

x
x

xSafe region
for OS

Challenge 3 : Utilizing unsafe region

Securely means two things:
1. Handle bit flips that may occur on unsafe region

2. Protect the unsafe region from illegal bit flips

ZebRAM slows down the consecutive accesses to the same
location in the unsafe region:

Physical address
space

Unsafe region

Cache layer

19

Safe region
for OS

Challenge 3 : Utilizing unsafe region

Securely means two things:
1. Handle bit flips that may occur on unsafe region

2. Protect the unsafe region from illegal bit flips

ZebRAM slows down the consecutive accesses to the same
location in the unsafe region:

1. By implements a cache layer using safe memory
2. Enforcing Least-recently-added eviction policy

Physical address
space

Unsafe region

Cache layer

19

Safe region
for OS

Challenge 3 : Utilizing unsafe region

Efficiently:

Physical address
space

Integrity Manager
Cache layer

20

Unsafe region

Safe region
for OS

Challenge 3 : Utilizing unsafe region

Efficiently:
➢ Exposes the unsafe region as swap space to the OS

Physical address
space

Swap space

Integrity Manager
Cache layer

20

Safe region
for OS

Challenge 3 : Utilizing unsafe region

Efficiently:
➢ Exposes the unsafe region as swap space to the OS

➢ Helps to utilize efficient page replacement policies
in commodity OS

Physical address
space

Swap space

Integrity Manager
Cache layer

20

Safe region
for OS

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

X

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

X

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

#

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

Life of a page in ZebRAM world

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

Implementation

Compression/
Decompression

Hash Generation/
Verification

ECC Encoder/
Decoder

Kswapd
Cache

#

Safe region

Swap Space

21

LKM

Evaluation setup

● Haswell i7-4790 machine
● Qemu-KVM hypervisor to run ZebRAM protected OS
● Ubuntu 16.04 64-bit OS
● 100Gbit/s link

22

Evaluation setup

● Haswell i7-4790 machine
● Qemu-KVM hypervisor to run ZebRAM protected OS
● Ubuntu 16.04 64-bit OS
● 100Gbit/s link

● SECURITY
● SPEC
● APACHE
● NGINX
● Micro benchmarks
● REDIS

22

Evaluation setup

● Haswell i7-4790 machine
● Qemu-KVM hypervisor to run ZebRAM protected OS
● Ubuntu 16.04 64-bit OS
● 100Gbit/s link

● SECURITY
● SPEC
● APACHE
● NGINX
● Micro benchmarks
● REDIS

22

Security Evaluation

We ran the Rowhammer exploit on the ZebRAM protected OS

23

Security Evaluation

We ran the Rowhammer exploit on the ZebRAM protected OS

23

Security Evaluation

We ran the Rowhammer exploit on the ZebRAM protected OS

23

= 100%

Security Evaluation

We ran the Rowhammer exploit on the ZebRAM protected OS

23

99.9%

Security Evaluation

We ran the Rowhammer exploit on the ZebRAM protected OS

Take away:

● ECC module alone detected 100% the bit flips
● ECC module corrected 99.97 % of the bit flips 23

Performance Evaluation

We ran spec 2006 on three different setup:

● Baseline (unmodified Linux) with 4GB memory

● ZebRAM (ECC only)

● ZebRAM (ECC + SHA-256)

24

Performance Evaluation

Spec 2006 benchmark shows ...

24

 0

 10

 20

 30

 40

 50

 60

 70

perlbench

bzip2
gcc

mcf
gobmk

hmmer

sjeng
libquantum

h264ref

omnetpp

astar
xalancbmk

bwaves

gamess

milc
zeusmp

gromacs

cactusADM

leslie3d

namd
dealII

soplex
povray

calculix

GemsFDTD

tonto
lbm wrf

sphinx3

geomean

SP
EC

 S
co

re

Unmodi ed
ZebRAM (ECC)

ZebRAM (ECC+SHA-256)

Performance Evaluation

Spec 2006 benchmark shows …
… 5% (geometric mean) overhead from unavailability of transparent huge page

24

 0

 10

 20

 30

 40

 50

 60

 70

perlbench

bzip2
gcc

mcf
gobmk

hmmer

sjeng
libquantum

h264ref

omnetpp

astar
xalancbmk

bwaves

gamess

milc
zeusmp

gromacs

cactusADM

leslie3d

namd
dealII

soplex
povray

calculix

GemsFDTD

tonto
lbm wrf

sphinx3

geomean

SP
EC

 S
co

re

Unmodi ed
ZebRAM (ECC)

ZebRAM (ECC+SHA-256)

Performance Evaluation

MCF benchmark shows more than 5% performance overhead

24

 0

 10

 20

 30

 40

 50

 60

 70

perlbench

bzip2
gcc

mcf
gobmk

hmmer

sjeng
libquantum

h264ref

omnetpp

astar
xalancbmk

bwaves

gamess

milc
zeusmp

gromacs

cactusADM

leslie3d

namd
dealII

soplex
povray

calculix

GemsFDTD

tonto
lbm wrf

sphinx3

geomean

SP
EC

 S
co

re

Unmodi ed
ZebRAM (ECC)

ZebRAM (ECC+SHA-256)

Performance Evaluation : Working Set Size

YCSB to generate the load and induce different working set size ...

… for redis (4.0.8) key-value store

We ran experiments on different setups:

○ ZebRAM Basic – uses only safe region and swaps out to SSD

○ ZebRAM (ECC only)

○ ZebRAM (ECC + SHA-256)

○ Baseline
24

Performance Evaluation

25

Performance Evaluation

1.05x performance overhead till it starts using swap

25

Performance Evaluation
When active working set is using 70% of the memory:
● ZebRAM (Basic) = 30x
● ZebRAM (ECC) = 3x
● ZebRAM (ECC + SHA-256) = 3.9x

25

Summary

● The ZebRAM is the first solution to provide complete protection against Rowhammer
attacks

● Performance overhead:

○ Minimal when the active working set fits in the safe region

○ Function of the active working set size when it does not fit in the safe region

● Code for ZebRAM will be available soon at https://github.com/vusec

26@vu5ec #zebram

https://github.com/vusec

