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Blackhat’18)
○ ANVIL - fails against DMA-based attacks   (Van der Veen et al. CCS’17)
○ CATT   - fails because different security domains share memory  (Gruss et al. S&P’18)

● ZebRAM
○ The first comprehensive and compatible software-based solution ...
○ … to defend against this hardware bug. 2
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How is this a security problem?

An attacker can flips a bit in:

● Cryptographic key, page table entry in kernel e.t.c. 
● … to compromise the system.

Two important points to note:
1. Attacker should able to read very fast
2. Can flip a bit on its neighboring row
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Isolation

To protect a process A from writing to process B’s memory:

➢ We isolate them using virtual address space 

A B

Virtual Address
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Isolation approach 1

1. Separate security domains using guard rows

CATT uses this approach (Brasser et al. SEC’17)

Limitation :

➢ Security domains share memory (pagecache)
(Gruss et al. S&P’18)
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Isolation approach 2

1. Separate security domains using guard rows
2. Isolate security sensitive data using guard rows

An application can use a custom memory allocator:

➢ Allocate memory protected by guard rows
➢ for storing sensitive data  (Tatar et al. ATC’18)

Limitation:

➢ Application specific defense 

Sensitive data

DRAM address space
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ZebRAM
Protect the whole system transparently..
...by placing guard row between every data row! 
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Data row

Data row

Data row

Data row

Data row

Safe region
for OS

Unsafe region

Guard row

Guard row

Guard row

Guard row

Guard row

DRAM address space

Basic ZebRAM

8

DRAM address space



How do we achieve these?
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ZebRAM Challenge 1

1. We want to isolate every row in DRAM using guard rows
○ Map physical address to its location in DRAM (DRAM address)

Physical address 
space

DRAM address space
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Safe region

Unsafe region
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Challenge 1 : Physical address to DRAM address

To understand this mapping:

➢ Previous reverse-engineering work (Pessl et al. SEC’16)
➢ More reverse engineering

DRAM address translation library, RAMSES
Memory allocator, ALIS (Tatar et al. ATC’18)

For ZebRAM, we extended ALIS…
...to allocate memory in zebra pattern.
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Challenge 2 : Re-mapping physical address space

We use virtualization feature like Intel (VT-x) …
…to transparently re-map the guard and data rows as two contiguous memory region

DRAM address space
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ZebRAM Challenge 3

3. Utilizing the unsafe region securely and efficiently 
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Challenge 3 : Utilizing unsafe region 

Securely means two things here :
1. Handle bit flips that may occur on unsafe region

ZebRAM implements a integrity manager that uses:
1. Hash verification (SHA-256)
2. Error correction code (ECC) 

Physical address   
space

Unsafe region
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Challenge 3 : Utilizing unsafe region 

Securely means two things:
1. Handle bit flips that may occur on unsafe region

2. Protect the unsafe region from illegal bit flips

ZebRAM slows down the consecutive accesses to the same 
location in the unsafe region:

1. By implements a cache layer using safe memory
2. Enforcing Least-recently-added eviction policy
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Challenge 3 : Utilizing unsafe region 

Efficiently: 
➢ Exposes the unsafe region as swap space to the OS

➢ Helps to utilize efficient page replacement policies
in commodity OS
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Swap space

Integrity Manager
Cache layer
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Security Evaluation

We ran the Rowhammer exploit on the ZebRAM protected OS

Take away:

● ECC module alone detected 100% the bit flips
● ECC module corrected 99.97 % of the bit flips 23



Performance Evaluation

We ran spec 2006 on three different setup:

● Baseline (unmodified Linux) with 4GB memory

● ZebRAM (ECC only)

● ZebRAM (ECC + SHA-256)
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Performance Evaluation

Spec 2006 benchmark shows …
… 5% (geometric mean) overhead from unavailability of transparent huge page
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Performance Evaluation

MCF benchmark shows more than 5% performance overhead 
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Performance Evaluation : Working Set Size 

YCSB to generate the load and induce different working set size ...

… for redis (4.0.8) key-value store

We ran experiments on different  setups:

○ ZebRAM Basic – uses only safe region and swaps out to SSD

○ ZebRAM (ECC only)

○ ZebRAM (ECC + SHA-256)

○ Baseline
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Performance Evaluation
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Performance Evaluation

1.05x performance overhead till it starts using swap
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Performance Evaluation
When active working set is using 70% of the memory:
● ZebRAM (Basic) = 30x
● ZebRAM (ECC)  = 3x
● ZebRAM (ECC + SHA-256) = 3.9x
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Summary

● The ZebRAM is the first solution to provide complete protection against Rowhammer
attacks

● Performance overhead: 

○ Minimal when the active working set fits in the safe region 

○ Function of the active working set size when it does not fit in the safe region

● Code for ZebRAM will be available soon at https://github.com/vusec

26@vu5ec #zebram
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