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Serverless Computing

o Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing
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Serverless Computing

o Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing

o Serverless computing is increasingly used for interactive analytics

Exploit massive parallelism with large number of serverless tasks
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The Challenge: Data Sharing

o Analytics jobs involve multiple stages of execution

o Serverless tasks need an efficient way to communicate

intermediate data between different stages of execution
\ )
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In fraditional analytics...

o Ephemeral data is exchanged directly between tasks
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In serverless analytics...

o Direct communication between serverless tasks is difficult:
Tasks are short-lived and stateless
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In serverless analytics...

o The natural approach for sharing ephemeral data is through a
common data store
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In serverless analytics...
o The natural approach for sharing ephemeral data is through a
common data store
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Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes
2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing

Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang, Christos Kozyrakis,
Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC'18, 2018. T


https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf

Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes

2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing

Example of performance-cost tradeoff for a serverless video analytics job
with different ephemeral data store configurations
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Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes

2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing
3. Fauktteleranee

Existing cloud storage systems do not meet the elasticity,
performance and cost demands of serverless analytics jobs.
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Pocket © et

o An elastic, distributed data store for ephemeral data sharing in
serverless analytics

o Pocket achieves high performance and cost efficiency by:
Leveraging multiple storage technologies
Rightsizing resource allocations for applications

Autoscaling storage resources in the cluster based on usage

o Pocket achieves similar performance to Redis, an in-memory key value
store, while saving ~60% in cost for various serverless analytics jobs
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Pocket Design
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Using Pocket
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Using Pocket
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1. Throughput allocation

Assigning Resources to Jobs  : capaciy aliocatio

3. Choice of storage tier(s)

Job A Optional hints about job: A
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Avutoscaling the Pocket Cluster

o Goal: scale cluster resources dynamically based on resource usage

o Mechanisms:
Monitor CPU, network bandwidth, and storage capacity utilization

Add/remove storage & metadata nodes to keep utilization within range
Steer data for incoming jobs to active nodes
Drain inactive nodes as jobs terminate

o Avoid migrating data
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Implementation

o Pocket's metadata and storage server implementation is
based on the Apache Crail distributed storage system [1]

o We use ReFlex for the Flash storage tier [2]

o Pocket runs the storage and metadata servers in containers,
orchestrated using Kubernetes (3]

[1] Apache Crail (incubating). http://crail.apache.org/
[2] ReFlex: Remote Flash == Local Flash. Ana Klimovic, Heiner Litz, Christos Kozyrakis. ASPLOS’17, 2017.

[3] Kubernetes. https://kubernetes.io/
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Pocket Evaluation

o We deploy Pocket on Amazon EC2

Controller mb5.xlarge

Metadata server mb5.xlarge

DRAM server r4.2xlarge .

NVMe Flash server i3.2xlarge EIOU:UD
SATA/SAS SSD server | i2.2xlarge M.l \Z>
HDD server h1.2xlarge

o We use AWS Lambda as our serverless platform
o Applications: MapReduce sort, video analytics, distributed compilation
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Application Perfformance with Pocket

o Compare Pocket to S3 and Redis, which are commonly used today
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Application Storage Cost with Pocket

o Pocket leverages job attribute hints for cost-effective resource allocation and
amortizes VM costs across multiple jobs, offering a pay-what-you-use model

s Redis = Pocket
0.2 (with throughput & capacity hints)

Pocket reduces cost
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Avutoscaling the Pocket Cluster
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Avutoscaling the Pocket Cluster
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Conclusion

o Pocket is a distributed ephemeral storage system that:
Leverages multiple storage technologies
Rightsizes resource allocations for applications
Autoscales storage cluster resources based on usage

o We designed Pocket for ephemeral data sharing in serverless
analytics. More generally, Pocket is an elastic, distributed /tmp.

www.github.com/stanford-mast/pocket
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