
1

Elastic Ephemeral Storage 
for Serverless Analytics

Ana Klimovic*, Yawen Wang*, Patrick Stuedi+, 
Animesh Trivedi+, Jonas Pfefferle+, Christos Kozyrakis*

*Stanford University, +IBM Research

OSDI 2018



2

Serverless Computing

o Serverless computing enables users to launch short-lived tasks 
with high elasticity and fine-grain resource billing 



3

Serverless Computing

o Serverless computing enables users to launch short-lived tasks 
with high elasticity and fine-grain resource billing 

o Serverless computing is increasingly used for interactive analytics

PyWren
(SoCC’17)

gg: The Stanford Builder

ExCamera
(NSDI’17) serverless

Amazon Aurora 
Serverless



4

Serverless Computing

o Serverless computing enables users to launch short-lived tasks 
with high elasticity and fine-grain resource billing 

o Serverless computing is increasingly used for interactive analytics
• Exploit massive parallelism with large number of serverless tasks

λ λ
λ

λ

λ
λ

λ λ
Result

User query
& 

input data
λ
λ

λ
λλ

λ



5

The Challenge: Data Sharing
o Analytics jobs involve multiple stages of execution

o Serverless tasks need an efficient way to communicate 
intermediate data between different stages of execution

Result
User query

& 
input data

λ λ
λ

λ

λ
λ

λ λ

λ
λ

λ
λλ

λ

ephemeral data



6

In traditional analytics…

o Ephemeral data is exchanged directly between tasks

mapper1

mapper2

mapper3

mapper0

reducer0

reducer1



7

In traditional analytics…

o Ephemeral data is exchanged directly between tasks

reducer0

reducer1

mapper1

mapper2

mapper3

mapper0



8

In serverless analytics…

o Direct communication between serverless tasks is difficult: 
• Tasks are short-lived and stateless

reducer0

reducer1

mapper1

mapper2

mapper3

mapper0

?



9

In serverless analytics…

o The natural approach for sharing ephemeral data is through a 
common data store

reducer0

reducer1

mapper1

mapper2

mapper3 

mapper0



10

In serverless analytics…

o The natural approach for sharing ephemeral data is through a 
common data store

reducer0

reducer1

mapper1

mapper2

mapper3

mapper0



11

Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes
2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing

Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang, Christos Kozyrakis, 
Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC’18, 2018.

https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf


12

Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes
2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing

• Example of performance-cost tradeoff for a serverless video analytics job 
with different ephemeral data store configurations 

Finding the Pareto optimal 
resource allocation is non-

trivial…and gets harder 
with multiple jobs.



13

Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes
2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing
3. Fault-tolerance

Existing cloud storage systems do not meet the elasticity, 
performance and cost demands of serverless analytics jobs. 



14

Pocket

o An elastic, distributed data store for ephemeral data sharing in 
serverless analytics 

o Pocket achieves high performance and cost efficiency by:
• Leveraging multiple storage technologies
• Rightsizing resource allocations for applications
• Autoscaling storage resources in the cluster based on usage

o Pocket achieves similar performance to Redis, an in-memory key value 
store, while saving ~60% in cost for various serverless analytics jobs



15

Metadata server(s)
request routing

Pocket Design

Storage server
CPU
Net

HDD

Storage server
CPU
Net

Flash

Storage server
CPU
Net

DRAM 

Storage server
CPU
Net

DRAM 

Controller
app-driven resource 
allocation & scaling 

Metadata server(s)
request routing



16

Metadata server(s)
request routing

Using Pocket
Job A

λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ 
λ λ λ λ 

Job C

i. Register job

Controller
app-driven resource 
allocation & scaling ii. Allocate & assign 

resources for job

Metadata server(s)
request routing

Storage server
CPU
Net

HDD

Storage server
CPU
Net

Flash

Storage server
CPU
Net

DRAM 

Storage server
CPU
Net

DRAM 



17

Metadata server(s)
request routing

Using Pocket
Job A

λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ 
λ λ λ λ 

Job C
λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

iii. Deregister job

PUT ‘x’

GET/PUT API 
accepts hints about 
job attributes and 

data lifetime

Controller
app-driven resource 
allocation & scaling 

Metadata server(s)
request routing

Storage server
CPU
Net

HDD

Storage server
CPU
Net

Flash

Storage server
CPU
Net

DRAM 

Storage server
CPU
Net

DRAM 



18

Assigning Resources to Jobs

Controller
app-driven resource 
allocation & scaling 

i. Register job

Optional hints about job:
§ Latency sensitivity
§ Maximum # of concurrent tasks
§ Total ephemeral data capacity
§ Peak aggregate bandwidth required

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Metadata server(s)
request routing

Metadata server(s)
request routing

1. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)

Storage server
CPU
Net

HDD

Storage server
CPU
Net

Flash

Storage server
CPU
Net

DRAM 

Storage server
CPU
Net

DRAM 



19

Assigning Resources to Jobs

Controller
app-driven resource 
allocation & scaling ii. Allocate & assign 

resources for job

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

1. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)

Job A: 
Server C à
Server D à

0.4

0.6

Job B: 
Server A à
Server B à
Server C à

0.2

0.3

0.5

online bin-packing algorithm

Job Weight Map

Metadata server(s)
request routing

Metadata server(s)
request routing

i. Register job

Storage server A
CPU
Net

HDD

Storage server B
CPU
Net

Flash

Storage server C
CPU
Net

DRAM 

Storage server D
CPU
Net

DRAM 



20

Autoscaling the Pocket Cluster

o Goal: scale cluster resources dynamically based on resource usage

o Mechanisms:
• Monitor CPU, network bandwidth, and storage capacity utilization
• Add/remove storage & metadata nodes to keep utilization within range
• Steer data for incoming jobs to active nodes 
• Drain inactive nodes as jobs terminate

o Avoid migrating data



21

Implementation

o Pocket’s metadata and storage server implementation is 
based on the Apache Crail distributed storage system [1]

o We use ReFlex for the Flash storage tier [2]

o Pocket runs the storage and metadata servers in containers, 
orchestrated using Kubernetes [3]

[1] Apache Crail (incubating). http://crail.apache.org/
[2] ReFlex: Remote Flash == Local Flash. Ana Klimovic, Heiner Litz, Christos Kozyrakis. ASPLOS’17, 2017.
[3] Kubernetes. https://kubernetes.io/

http://crail.apache.org/
https://web.stanford.edu/~anakli/pdf/reflex.pdf
https://kubernetes.io/


22

Pocket Evaluation

o We deploy Pocket on Amazon EC2

o We use AWS Lambda as our serverless platform
o Applications: MapReduce sort, video analytics, distributed compilation

Controller m5.xlarge

Metadata server m5.xlarge

DRAM server r4.2xlarge

NVMe Flash server i3.2xlarge

SATA/SAS SSD server i2.2xlarge

HDD server h1.2xlarge



23

Application Performance with Pocket
o Compare Pocket to S3 and Redis, which are commonly used today

S3 does not 
provide sufficient 

throughput

MapReduce sort job hints
Ephemeral 
capacity

100 
GB

Latency sensitive False
Aggregate
peak throughput

100 
Gb/s



24

Application Performance with Pocket
o Compare Pocket to S3 and Redis, which are commonly used today

Pocket achieves similar 
performance to Redis
but uses NVMe Flash

MapReduce sort job hints
Ephemeral 
capacity

100 
GB

Latency sensitive False
Aggregate
peak throughput

100 
Gb/s



25

Application Storage Cost with Pocket
o Pocket leverages job attribute hints for cost-effective resource allocation and 

amortizes VM costs across multiple jobs, offering a pay-what-you-use model 

(with throughput & capacity hints)

Pocket reduces cost 
by ~60% compared 

to Redis for all 3 jobs



26

Autoscaling the Pocket Cluster

Job hints Job1: Sort Job2: Video analytics Job3: Sort

Latency sensitive False False False

Ephemeral data capacity 10 GB 6 GB 10 GB

Aggregate throughput 3 GB/s 2.5 GB/s 3 GB/s



27

Autoscaling the Pocket Cluster
The controller elastically 

scales resources to 
meet the requirements 

of multiple jobs 

Job hints Job1: Sort Job2: Video analytics Job3: Sort

Latency sensitive False False False

Ephemeral data capacity 10 GB 6 GB 10 GB

Aggregate throughput 3 GB/s 2.5 GB/s 3 GB/s



28

Conclusion
o Pocket is a distributed ephemeral storage system that: 

• Leverages multiple storage technologies
• Rightsizes resource allocations for applications
• Autoscales storage cluster resources based on usage

o We designed Pocket for ephemeral data sharing in serverless 
analytics. More generally, Pocket is an elastic, distributed /tmp.

www.github.com/stanford-mast/pocket

http://www.github.com/stanford-mast/pocket

