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Serverless Computing

o Serverless computing enables users to launch short-lived tasks 
with high elasticity and fine-grain resource billing 
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Serverless Computing

o Serverless computing enables users to launch short-lived tasks 
with high elasticity and fine-grain resource billing 

o Serverless computing is increasingly used for interactive analytics
• Exploit massive parallelism with large number of serverless tasks
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The Challenge: Data Sharing
o Analytics jobs involve multiple stages of execution

o Serverless tasks need an efficient way to communicate 
intermediate data between different stages of execution
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In traditional analytics…

o Ephemeral data is exchanged directly between tasks
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In serverless analytics…

o Direct communication between serverless tasks is difficult: 
• Tasks are short-lived and stateless
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In serverless analytics…

o The natural approach for sharing ephemeral data is through a 
common data store
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Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes
2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing

Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang, Christos Kozyrakis, 
Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC’18, 2018.

https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf
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Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes
2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing

• Example of performance-cost tradeoff for a serverless video analytics job 
with different ephemeral data store configurations 

Finding the Pareto optimal 
resource allocation is non-

trivial…and gets harder 
with multiple jobs.
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Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes
2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing
3. Fault-tolerance

Existing cloud storage systems do not meet the elasticity, 
performance and cost demands of serverless analytics jobs. 
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Pocket

o An elastic, distributed data store for ephemeral data sharing in 
serverless analytics 

o Pocket achieves high performance and cost efficiency by:
• Leveraging multiple storage technologies
• Rightsizing resource allocations for applications
• Autoscaling storage resources in the cluster based on usage

o Pocket achieves similar performance to Redis, an in-memory key value 
store, while saving ~60% in cost for various serverless analytics jobs
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Metadata server(s)
request routing

Using Pocket
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Assigning Resources to Jobs
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Assigning Resources to Jobs
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Autoscaling the Pocket Cluster

o Goal: scale cluster resources dynamically based on resource usage

o Mechanisms:
• Monitor CPU, network bandwidth, and storage capacity utilization
• Add/remove storage & metadata nodes to keep utilization within range
• Steer data for incoming jobs to active nodes 
• Drain inactive nodes as jobs terminate

o Avoid migrating data
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Implementation

o Pocket’s metadata and storage server implementation is 
based on the Apache Crail distributed storage system [1]

o We use ReFlex for the Flash storage tier [2]

o Pocket runs the storage and metadata servers in containers, 
orchestrated using Kubernetes [3]

[1] Apache Crail (incubating). http://crail.apache.org/
[2] ReFlex: Remote Flash == Local Flash. Ana Klimovic, Heiner Litz, Christos Kozyrakis. ASPLOS’17, 2017.
[3] Kubernetes. https://kubernetes.io/

http://crail.apache.org/
https://web.stanford.edu/~anakli/pdf/reflex.pdf
https://kubernetes.io/
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Pocket Evaluation

o We deploy Pocket on Amazon EC2

o We use AWS Lambda as our serverless platform
o Applications: MapReduce sort, video analytics, distributed compilation

Controller m5.xlarge

Metadata server m5.xlarge

DRAM server r4.2xlarge

NVMe Flash server i3.2xlarge

SATA/SAS SSD server i2.2xlarge

HDD server h1.2xlarge
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Application Performance with Pocket
o Compare Pocket to S3 and Redis, which are commonly used today

S3 does not 
provide sufficient 

throughput
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Application Performance with Pocket
o Compare Pocket to S3 and Redis, which are commonly used today

Pocket achieves similar 
performance to Redis
but uses NVMe Flash

MapReduce sort job hints
Ephemeral 
capacity

100 
GB

Latency sensitive False
Aggregate
peak throughput

100 
Gb/s



25

Application Storage Cost with Pocket
o Pocket leverages job attribute hints for cost-effective resource allocation and 

amortizes VM costs across multiple jobs, offering a pay-what-you-use model 

(with throughput & capacity hints)

Pocket reduces cost 
by ~60% compared 

to Redis for all 3 jobs
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Autoscaling the Pocket Cluster

Job hints Job1: Sort Job2: Video analytics Job3: Sort

Latency sensitive False False False

Ephemeral data capacity 10 GB 6 GB 10 GB

Aggregate throughput 3 GB/s 2.5 GB/s 3 GB/s
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Autoscaling the Pocket Cluster
The controller elastically 

scales resources to 
meet the requirements 

of multiple jobs 

Job hints Job1: Sort Job2: Video analytics Job3: Sort

Latency sensitive False False False

Ephemeral data capacity 10 GB 6 GB 10 GB

Aggregate throughput 3 GB/s 2.5 GB/s 3 GB/s
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Conclusion
o Pocket is a distributed ephemeral storage system that: 

• Leverages multiple storage technologies
• Rightsizes resource allocations for applications
• Autoscales storage cluster resources based on usage

o We designed Pocket for ephemeral data sharing in serverless 
analytics. More generally, Pocket is an elastic, distributed /tmp.

www.github.com/stanford-mast/pocket

http://www.github.com/stanford-mast/pocket

