Elastic Ephemeral Storage
for Serverless Analytics

Ana Klimovic*, Yawen Wang*, Patrick Stuedi™,
Animesh Trivedi*, Jonas Pfefferle*, Christos Kozyrakis*

*Stanford University, *IBM Research

OSDI 2018

Serverless Computing

o Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing

Serverless Computing

o Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing

o Serverless computing is increasingly used for interactive analytics

PyWren €databricks
(SoCC™7) serverless
gg: The Stanford Builder Amazon Aurora

Serverless

Serverless Computing

o Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing

o Serverless computing is increasingly used for interactive analytics

Exploit massive parallelism with large number of serverless tasks

User query
& d d Result
input data

The Challenge: Data Sharing

o Analytics jobs involve multiple stages of execution

o Serverless tasks need an efficient way to communicate

intermediate data between different stages of execution
\)

ephemeral data

User query
& d d Result
input data

In fraditional analytics...

o Ephemeral data is exchanged directly between tasks

mapperg
. d
reducerg
mapper; 0
mapper; 0

Mmappers .

In fraditional analytics...

o Ephemeral data is exchanged directly between tasks

mappery

.> redUCerO
mapper
il

Ve

mapper; .//

mappers;

In serverless analytics...

o Direct communication between serverless tasks is difficult:
Tasks are short-lived and stateless

mapperg
e d

reducer

mapper 0

mapper; 0O

mappers g

In serverless analytics...

o The natural approach for sharing ephemeral data is through a
common data store

reducerg

mapperg
mapper \

mapper;

mappers

NN
i

In serverless analytics...
o The natural approach for sharing ephemeral data is through a
common data store

Mmappery

mapper;

reducerg

mapper;

mappers

10

Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes
2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing

Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang, Christos Kozyrakis,
Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC'18, 2018. T

https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf

Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes

2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing

Example of performance-cost tradeoff for a serverless video analytics job
with different ephemeral data store configurations

800

600

Execution Time (s)
N £
o o
o o

o

® DRAM @ NVMe Flash HDLC
Finding the Pareto optimal
resource allocation is non-
trivial...and gets harder
with multiple jobs.
o ¢ o °
. < 4 %9 -0%¢ o

0.05] 0.15 0.2

Resource usage cost (S/hr)
12

Requirements for Ephemeral Storage

1. High performance for a wide range of object sizes

2. Cost efficiency, i.e., fine-grain, pay-what-you-use resource billing
3. Fauktteleranee

Existing cloud storage systems do not meet the elasticity,
performance and cost demands of serverless analytics jobs.

13

Pocket © et

o An elastic, distributed data store for ephemeral data sharing in
serverless analytics

o Pocket achieves high performance and cost efficiency by:
Leveraging multiple storage technologies
Rightsizing resource allocations for applications

Autoscaling storage resources in the cluster based on usage

o Pocket achieves similar performance to Redis, an in-memory key value
store, while saving ~60% in cost for various serverless analytics jobs

14

Pocket Design

~

Controller
app-driven resource
allocation & scaling

Metadata server(s)
request routing

Storage server Storage server Storage server Storage server

CPU CPU CPU CPU
Net Net Net Net
HDD Flash DRAM DRAM

Using Pocket

Job A Job B Job C
AAAAAAA AAAAA
AAAAAAA AAAA
i. Registe‘r’jb.b
oo D\
Il <«
antro er Metadata server(s)
app-driven resource | . .
. . request routing
allocation & scaling ii. Allocate & assign
resources for job
Storage server Storage server Storage server Storage server

CPU CPU CPU CPU
Net Net Net Net
HDD Flash DRAM DRAM

Using Pocket

Job A Job B Job C
AAAAAAA AAAAA .-+ AAAAAAAAAA accgg;/ﬁﬂséi'out
AAAAAAA AAAN AAAAAAAAAAA ok slEtes 2nd
PUT x’ ‘ “\ data lifetime
- \
Controller < * 1 "jii. Deregister job

Metadata server(s)

app-driven resource :
request routing

allocation & scaling

Storage server Storage server Storage server Storage server

CPU CPU CPU CPU
Net Net Net Net
HDD Flash DRAM DRAM

17

1. Throughput allocation

Assigning Resources to Jobs : capaciy aliocatio

3. Choice of storage tier(s)

Job A Optional hints about job: A

AAAAAAA Latency sensitivity

» Maximum # of concurrent tasks
AAAAAAA » Total ephemeral data capacity
e » Peak aggregate bandwidth required)

", i. Register job

~

Controller ~~
app-driven resource
allocation & scaling

Metadata server(s)
request routing

Storage server Storage server Storage server Storage server

CPU CPU CPU CPU
Net Net Net Net
HDD Flash DRAM DRAM

° ° 1. Throughput allocation
Assigning Resources 1o JObs ;oo sliocation
3. Choice of storage tier(s)
Job A

AAAAAAA ‘ online bin-packing algorithm

AAAA 2\.7\ A Job Weight Map Job A:
Server C >
" i. Register job N Server D 2> [

Controller Job B:

Metadata server(s
app-driven resource | (5) | ServerA >
allocation & scaling ii. Allocate & assign q 9 Server B 2
resources for job Server C 2
Storage server A Storage server B Storage server C Storage server D

CPU CPU CPU CPU
Net Net Net Net
HDD Flash DRAM DRAM

Avutoscaling the Pocket Cluster

o Goal: scale cluster resources dynamically based on resource usage

o Mechanisms:
Monitor CPU, network bandwidth, and storage capacity utilization

Add/remove storage & metadata nodes to keep utilization within range
Steer data for incoming jobs to active nodes
Drain inactive nodes as jobs terminate

o Avoid migrating data

20

Implementation

o Pocket's metadata and storage server implementation is
based on the Apache Crail distributed storage system [1]

o We use ReFlex for the Flash storage tier [2]

o Pocket runs the storage and metadata servers in containers,
orchestrated using Kubernetes (3]

[1] Apache Crail (incubating). http://crail.apache.org/
[2] ReFlex: Remote Flash == Local Flash. Ana Klimovic, Heiner Litz, Christos Kozyrakis. ASPLOS’17, 2017.

[3] Kubernetes. https://kubernetes.io/

21

http://crail.apache.org/
https://web.stanford.edu/~anakli/pdf/reflex.pdf
https://kubernetes.io/

Pocket Evaluation

o We deploy Pocket on Amazon EC2

Controller mb5.xlarge

Metadata server mb5.xlarge

DRAM server r4.2xlarge .

NVMe Flash server i3.2xlarge EIOU:UD
SATA/SAS SSD server | i2.2xlarge M.l \Z>
HDD server h1.2xlarge

o We use AWS Lambda as our serverless platform
o Applications: MapReduce sort, video analytics, distributed compilation

22

Application Perfformance with Pocket

o Compare Pocket to S3 and Redis, which are commonly used today

=
o
<

Average Time per Lambda (s)

o
o

o
ot

N
C?

N
o

©

S3 does not
provide sufficient

throughput

S3 Redis Pocket
250 lambdas

N S31/0
Eam Compute
W@ Ephemeral Data I/O

MapReduce sort job hints
Ephemeral 100
capacity GB
Latency sensitive False
Aggregate 100
peak throughput Gb/s

23

Application Perfformance with Pocket

o Compare Pocket to S3 and Redis, which are commonly used today

=
o
<

Average Time per Lambda (s)

o
o

o
ot

N
C?

N
o

©

Pocket achieves similar
performance to Redis
but uses NVMe Flash

S3 Redis Pocket
250 lambdas

N S31/0
Eam Compute
W@ Ephemeral Data I/O

MapReduce sort job hints
Ephemeral 100
capacity GB
Latency sensitive False
Aggregate 100
peak throughput Gb/s

24

Application Storage Cost with Pocket

o Pocket leverages job attribute hints for cost-effective resource allocation and
amortizes VM costs across multiple jobs, offering a pay-what-you-use model

s Redis = Pocket
0.2 (with throughput & capacity hints)

Pocket reduces cost

o 0.15 by ~60% compared
= to Redis for all 3 jobs
(%2}

S 0.1

o

o

©

| .

S 0.05

n

Sort Video analytics Lambda-cc

25

Avutoscaling the Pocket Cluster

61 . Total GB/s allocated

—— Total GB/s used

($,]

B

N

Throughput (GB/s)
w

=

o

100 150 200 250 300
Time (s)

Jobl

Job hints Job1: Sort

Latency sensitive False
Ephemeral data capacity 10 GB
Aggregate throughput 3 GB/s

350

26

Avutoscaling the Pocket Cluster

Ve
61 ——. Total GB/s allocated Fommm oo 7 The controller elastically
—— Total GB/s used I I scales resources to

2] : g meet the requirements
= : ~ ! of multiple jobs
o4 I]
5 | : ~
33 —fn--1 m-—--
5 o |
8 21 ——— Y B T 1
<
|_

1,

01 -

0 100 150 200 250 300 350
T | [] Tmet | |
Jobl Jobl Job2 Job3 Job3 Job2

Job hints Job1: Sort Job2: Video analytics Job3: Sort

Latency sensitive

False False False

Ephemeral data capacity 10 GB 6 GB 10 GB

Aggregate throughput 3 GB/s 2.5 GB/s 3 GB/s

27

Conclusion

o Pocket is a distributed ephemeral storage system that:
Leverages multiple storage technologies
Rightsizes resource allocations for applications
Autoscales storage cluster resources based on usage

o We designed Pocket for ephemeral data sharing in serverless
analytics. More generally, Pocket is an elastic, distributed /tmp.

www.github.com/stanford-mast/pocket

LR)
o
L 2 ,:‘OE - *
<

28

http://www.github.com/stanford-mast/pocket

