
Three steps is all you need
fast, accurate, automatic scaling decisions

for distributed streaming dataflows

Vasiliki Kalavri†, John Liagouris†, Moritz Hoffmann†,
Desislava Dimitrova†, Matthew Forshaw††, Timothy Roscoe†

Support:

†

†Systems Group, Department of Computer Science, ETH Zürich, firstname.lastname@inf.ethz.ch
‡

††Newcastle University, firstname.lastname@newcastle.ac.uk

mailto:firstname.lastname@newcastle.ac.uk

Any streaming job will inevitably become
over- or under-provisioned in the future

2

Any streaming job will inevitably become
over- or under-provisioned in the future

ev
en

ts
/s

time

load shedding

: input rate : throughput

2

ev
en

ts
/s

time

idle resources

Any streaming job will inevitably become
over- or under-provisioned in the future

ev
en

ts
/s

time

load shedding

: input rate : throughput

2

ev
en

ts
/s

time

idle resources

ev
en

ts
/s

time

SLO violation

Any streaming job will inevitably become
over- or under-provisioned in the future

ev
en

ts
/s

time

load shedding

: input rate : throughput

2

3

input streams

parallel dataflow

output stream

CONFIGURING PARALLELISM FOR A STREAMING JOB

3

input streams

parallel dataflow

output stream

1. monitor
event rates

2. configure
parallelism

3. deploy and test
performance

until the target throughput is met

CONFIGURING PARALLELISM FOR A STREAMING JOB

THE SCALING PROBLEM

4

Given a logical dataflow with sources S1, S2, … Sn and rates λ1, λ2, … λn
identify the minimum parallelism πi per operator i, such that the physical

dataflow can sustain all source rates.

S1

S2

λ1

λ2

S1

S2

π=2

π=3

logical dataflow physical dataflow

5

scaling
controllermetrics

policy

scaling action

AUTOMATIC SCALING OVERVIEW

5

scaling
controllermetrics

policy

scaling action

detect
symptoms

AUTOMATIC SCALING OVERVIEW

5

scaling
controllermetrics

policy

scaling action

detect
symptoms

decide whether
to scale

AUTOMATIC SCALING OVERVIEW

5

scaling
controllermetrics

policy

scaling action

detect
symptoms

decide whether
to scale

decide how
much to scale

AUTOMATIC SCALING OVERVIEW

6

policy scaling action
Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

…

Existing approaches
metrics

6

policy scaling action

CPU utilization
backlog, tuples/s

backpressure signal

Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

…

Existing approaches
metrics

6

policy scaling action

CPU utilization
backlog, tuples/s

backpressure signal

threshold and rule-based
if CPU > 80% => scale

Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

…

Existing approaches
metrics

6

policy scaling action

CPU utilization
backlog, tuples/s

backpressure signal

threshold and rule-based
if CPU > 80% => scale

small changes,
one operator at a time

Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

…

Existing approaches
metrics

6

policy scaling action

CPU utilization
backlog, tuples/s

backpressure signal

threshold and rule-based
if CPU > 80% => scale

small changes,
one operator at a time

problematic due
to interference,
multitenancy

Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

…

Existing approaches
metrics

6

policy scaling action

CPU utilization
backlog, tuples/s

backpressure signal

threshold and rule-based
if CPU > 80% => scale

small changes,
one operator at a time

problematic due
to interference,
multitenancy

sensitive to
noise, manual,
hard to tune

Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

…

Existing approaches
metrics

6

policy scaling action

CPU utilization
backlog, tuples/s

backpressure signal

threshold and rule-based
if CPU > 80% => scale

small changes,
one operator at a time

problematic due
to interference,
multitenancy

sensitive to
noise, manual,
hard to tune

non-predictive,
speculative steps

Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

…

Existing approaches
metrics

6

policy scaling action

CPU utilization
backlog, tuples/s

backpressure signal

threshold and rule-based
if CPU > 80% => scale

small changes,
one operator at a time

problematic due
to interference,
multitenancy

sensitive to
noise, manual,
hard to tune

non-predictive,
speculative steps

Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

…

Existing approaches
metrics

oscillations

6

policy scaling action

CPU utilization
backlog, tuples/s

backpressure signal

threshold and rule-based
if CPU > 80% => scale

small changes,
one operator at a time

problematic due
to interference,
multitenancy

sensitive to
noise, manual,
hard to tune

non-predictive,
speculative steps

Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

…

Existing approaches
metrics

oscillations
temporary over-
and under-
provisioning

6

policy scaling action

CPU utilization
backlog, tuples/s

backpressure signal

threshold and rule-based
if CPU > 80% => scale

small changes,
one operator at a time

problematic due
to interference,
multitenancy

sensitive to
noise, manual,
hard to tune

non-predictive,
speculative steps

Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

…

Existing approaches
metrics

oscillations slow
convergence

temporary over-
and under-
provisioning

7

effect of Dhalion’s scaling actions
in an initially under-provisioned wordcount dataflow

7

effect of Dhalion’s scaling actions
in an initially under-provisioned wordcount dataflow

1
2

3 654

8

externally
observed

threshold-based

non-predictive,
single-operator

policy

scaling action

metrics

true rates through
instrumentation

dataflow
dependency model

predictive,
dataflow-wide

actions

externally
observed

threshold-based

non-predictive,
single-operator

policy

scaling action

metrics

8

OUR APPROACH: DS2

no oscillations

fast convergence

true rates as
bounds to avoid

over/under-shoot

true rates through
instrumentation

dataflow
dependency model

predictive,
dataflow-wide

actions

externally
observed

threshold-based

non-predictive,
single-operator

policy

scaling action

metrics

8

OUR APPROACH: DS2

o1src o2

10 rec/s 100 rec/s

backpressure
target: 40 rec/s

9

o1src o2

10 rec/s 100 rec/s

backpressure
target: 40 rec/s

9

observed view

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?

10

o1src o2

10 rec/s 100 rec/s

backpressure
target: 40 rec/s

observed view

10

o1src o2

10 rec/s 100 rec/s

backpressure
target: 40 rec/s

observed view

src

o1

o2

Time (s)

10 10 10

1 2 3 4

100 100
: busy
: waiting

0.5s

instrumentation

DS2 view

10

o1src o2

10 rec/s 100 rec/s

backpressure
target: 40 rec/s

observed view

src

o1

o2

Time (s)

10 10 10

1 2 3 4

100 100
: busy
: waiting

0.5s

instrumentation

DS2 view

10

o1src o2

10 rec/s 100 rec/s

backpressure
target: 40 rec/s

observed view

ο1 is the
bottleneck

src

o1

o2

Time (s)

10 10 10

1 2 3 4

100 100
: busy
: waiting

0.5s

instrumentation

DS2 view

10

o1src o2

10 rec/s 100 rec/s

backpressure
target: 40 rec/s

observed view

ο1 is the
bottleneck

true rate = 200 rec/s

2 ο2 instances can
keep up with the rate

of 4 ο1 instances

THE DS2 MODEL

11

THE DS2 MODEL
Useful time: The time spent by an operator instance in
deserialization, processing, and serialization activities.

11

THE DS2 MODEL
Useful time: The time spent by an operator instance in
deserialization, processing, and serialization activities.

11

True processing (resp. output) rate: The number of records an
operator instance can process (resp. output) per unit of useful time.

THE DS2 MODEL
Useful time: The time spent by an operator instance in
deserialization, processing, and serialization activities.

11

True processing (resp. output) rate: The number of records an
operator instance can process (resp. output) per unit of useful time.

Optimal
parallelism for oi

aggregated true output rate of upstream ops
average true processing rate of oi

:

CONVERGENCE STEPS

12

parallelism

initial rate

target• no overshoot when scaling up:
ideal rate is an upper bound

• no undershoot when scaling
down: ideal rate is a lower bound

if the actual scaling is linear,
convergence takes one step

p0

x

CONVERGENCE STEPS

12

parallelism

initial rate

target
pre

dic
tio

n

• no overshoot when scaling up:
ideal rate is an upper bound

• no undershoot when scaling
down: ideal rate is a lower bound

if the actual scaling is linear,
convergence takes one step

p0

x

CONVERGENCE STEPS

12

parallelism

initial rate

target
pre

dic
tio

n

• no overshoot when scaling up:
ideal rate is an upper bound

• no undershoot when scaling
down: ideal rate is a lower bound

if the actual scaling is linear,
convergence takes one step

p0 p1

x

x

CONVERGENCE STEPS

12

parallelism

initial rate

target
pre

dic
tio

n

• no overshoot when scaling up:
ideal rate is an upper bound

• no undershoot when scaling
down: ideal rate is a lower bound

ac
tu

al
if the actual scaling is linear,

convergence takes one step

p0 p1

x

x

13

In practice, rates are
commonly sub-linear
due to other overheads
(e.g. worker coordination).

parallelism

initial rate

target

x

pre
dic

tio
n

x

p0 p1

CONVERGENCE STEPS

13

In practice, rates are
commonly sub-linear
due to other overheads
(e.g. worker coordination).

parallelism

initial rate

target

x

pre
dic

tio
n

x
actual

p0 p1

CONVERGENCE STEPS

13

In practice, rates are
commonly sub-linear
due to other overheads
(e.g. worker coordination).

parallelism

initial rate

target

x

pre
dic

tio
n

x
actual

x error

when the actual scaling is sub-linear,
convergence takes more than one steps p0 p1

CONVERGENCE STEPS

14

In practice, rates are
commonly sub-linear
due to other overheads
(e.g. worker coordination).

parallelism

p0

initial rate

target

p1

pre
dic

tion

actual

x
x

p2

In our experiments, DS2 took
up to three steps to converge

for complex queries.

x

p3

CONVERGENCE STEPS

15

DS2 operates online in a reactive setting

Instrumented
stream processor

Scaling Manager Scaling Policy

Metrics
Repository

invoke

re-scale job

report metrics

monitor

pull metrics

decision

Timely dataflow

Apache Flink

EVALUATION

DS2 VS. DHALION ON HERON

17

wordcount

Target rate: 16.700 rec/s

DS2 VS. DHALION ON HERON

17

wordcount

DS2 converges in a
single step for
both operators

Target rate: 16.700 rec/s

DS2 VS. DHALION ON HERON

17

wordcount

DS2 converges in a
single step for
both operators

DS2 converges in
60s, i.e. as soon as it
receives the Heron

metrics

Target rate: 16.700 rec/s

DS2 VS. DHALION ON HERON

17

wordcount

DS2 converges in a
single step for
both operators

Dhalion scales one
operator at a time,
resulting to a total

of six steps

DS2 converges in
60s, i.e. as soon as it
receives the Heron

metrics

Target rate: 16.700 rec/s

DS2 VS. DHALION ON HERON

17

wordcount

DS2 converges in a
single step for
both operators

Dhalion scales one
operator at a time,
resulting to a total

of six steps

DS2 converges in
60s, i.e. as soon as it
receives the Heron

metrics

Dhalion converges
in 2000s

Target rate: 16.700 rec/s

DS2 VS. DHALION ON HERON

17

wordcount

DS2 converges in a
single step for
both operators

Dhalion scales one
operator at a time,
resulting to a total

of six steps

DS2 converges in
60s, i.e. as soon as it
receives the Heron

metrics

Dhalion converges
in 2000s

+10 counts

+12 mappers

Target rate: 16.700 rec/s

DS2 ON APACHE FLINK

18

wordcount

Target rate: 2.000.000 rec/s

DS2 ON APACHE FLINK

18

wordcount

Apache Flink
savepoint and

reconfiguration
takes ~30s

Target rate: 2.000.000 rec/s

DS2 ON APACHE FLINK

18

wordcount

Apache Flink
savepoint and

reconfiguration
takes ~30s

DS2 converges in
two steps for
both operators Target rate: 2.000.000 rec/s

DS2 ON APACHE FLINK

18

wordcount

Apache Flink
savepoint and

reconfiguration
takes ~30s

DS2 converges in
two steps for
both operators

DS2 reacts 3s
after the target

rate has changed

Target rate: 2.000.000 rec/s

CONVERGENCE - NEXMARK

initial
parallelism

Q1:
flatmap

Q2:
filter

Q3:
incremental

join

Q5:
tumbling window

join

Q8:
sliding

window

Q11:
session window

8 => 12 => 16 11 => 13 => 14 16 => 20 14 => 15 => 16 10 12 => 22 => 28

12 => 16 14 18 => 20 16 10 22 => 28

16 => 16 12 => 14 20 16 8 => 10 26 => 28

20 => 16 13 => 14 20 14 => 16 8 => 10 28

24 => 16 14 20 14 => 16 8 => 10 28

28 => 16 14 20 13 => 16 8 => 10 28

=> : scaling action

19

CONVERGENCE - NEXMARK

initial
parallelism

Q1:
flatmap

Q2:
filter

Q3:
incremental

join

Q5:
tumbling window

join

Q8:
sliding

window

Q11:
session window

8 => 12 => 16 11 => 13 => 14 16 => 20 14 => 15 => 16 10 12 => 22 => 28

12 => 16 14 18 => 20 16 10 22 => 28

16 => 16 12 => 14 20 16 8 => 10 26 => 28

20 => 16 13 => 14 20 14 => 16 8 => 10 28

24 => 16 14 20 14 => 16 8 => 10 28

28 => 16 14 20 13 => 16 8 => 10 28

=> : scaling action

scale-up

19

CONVERGENCE - NEXMARK

initial
parallelism

Q1:
flatmap

Q2:
filter

Q3:
incremental

join

Q5:
tumbling window

join

Q8:
sliding

window

Q11:
session window

8 => 12 => 16 11 => 13 => 14 16 => 20 14 => 15 => 16 10 12 => 22 => 28

12 => 16 14 18 => 20 16 10 22 => 28

16 => 16 12 => 14 20 16 8 => 10 26 => 28

20 => 16 13 => 14 20 14 => 16 8 => 10 28

24 => 16 14 20 14 => 16 8 => 10 28

28 => 16 14 20 13 => 16 8 => 10 28

=> : scaling action

scale-up

scale-down

19

CONVERGENCE - NEXMARK

initial
parallelism

Q1:
flatmap

Q2:
filter

Q3:
incremental

join

Q5:
tumbling window

join

Q8:
sliding

window

Q11:
session window

8 => 12 => 16 11 => 13 => 14 16 => 20 14 => 15 => 16 10 12 => 22 => 28

12 => 16 14 18 => 20 16 10 22 => 28

16 => 16 12 => 14 20 16 8 => 10 26 => 28

20 => 16 13 => 14 20 14 => 16 8 => 10 28

24 => 16 14 20 14 => 16 8 => 10 28

28 => 16 14 20 13 => 16 8 => 10 28

a single step for many queries
and initial configurations

=> : scaling action

scale-up

scale-down

19

CONVERGENCE - NEXMARK

initial
parallelism

Q1:
flatmap

Q2:
filter

Q3:
incremental

join

Q5:
tumbling window

join

Q8:
sliding

window

Q11:
session window

8 => 12 => 16 11 => 13 => 14 16 => 20 14 => 15 => 16 10 12 => 22 => 28

12 => 16 14 18 => 20 16 10 22 => 28

16 => 16 12 => 14 20 16 8 => 10 26 => 28

20 => 16 13 => 14 20 14 => 16 8 => 10 28

24 => 16 14 20 14 => 16 8 => 10 28

28 => 16 14 20 13 => 16 8 => 10 28

at most 3 steps

a single step for many queries
and initial configurations

=> : scaling action

scale-up

scale-down

19

RECAP

20

Observed metrics threshold-
based policies can lead to

oscillations, misconfiguration
and slow convergence.

DS2 uses instrumentation to
measure true processing and

output rates and estimate
parallelism for all operators at once.

Stream
processor

Scaling Manager Scaling Policy

Metrics
Repositor

invoke

re-scale job

report metrics

monitor

pull metrics

decision

Timely dataflow

DS2 makes fast and accurate
scaling decisions and converges in
up to three steps even for non-

linear, complex dataflows.

https://github.com/strymon-system/ds2

Three steps is all you need
fast, accurate, automatic scaling decisions

for distributed streaming dataflows

Vasiliki Kalavri†, John Liagouris†, Moritz Hoffmann†,
Desislava Dimitrova†, Matthew Forshaw††, Timothy Roscoe†

Support:

†

†Systems Group, Department of Computer Science, ETH Zürich, firstname.lastname@inf.ethz.ch
‡

††Newcastle University, firstname.lastname@newcastle.ac.uk

mailto:firstname.lastname@newcastle.ac.uk

