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input streams

parallel dataflow

output stream

1. monitor 
event rates

2. configure 
parallelism

3. deploy and test 
performance

until the target throughput is met

CONFIGURING PARALLELISM FOR A STREAMING JOB



THE SCALING PROBLEM
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Given a logical dataflow with sources S1, S2, … Sn and rates λ1, λ2, … λn 
identify the minimum parallelism πi per operator i, such that the physical 

dataflow can sustain all source rates.

S1

S2

λ1

λ2

S1

S2

π=2

π=3

logical dataflow physical dataflow
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observed view

Which operator is the bottleneck?

What if we scale ο1 x 4?

How much to scale ο2?
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o1src o2

10 rec/s 100 rec/s

backpressure
target: 40 rec/s

observed view

ο1 is the 
bottleneck

true rate = 200 rec/s

2 ο2 instances can 
keep up with the rate 

of 4 ο1 instances
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True processing (resp. output) rate: The number of records an 
operator instance can process (resp. output) per unit of useful time.

Optimal 
parallelism for oi

aggregated true output rate of upstream ops
average true processing rate of oi

:



CONVERGENCE STEPS

12

parallelism

initial rate

target• no overshoot when scaling up: 
ideal rate is an upper bound

• no undershoot when scaling 
down: ideal rate is a lower bound

if the actual scaling is linear, 
convergence takes one step

p0

x



CONVERGENCE STEPS

12

parallelism

initial rate

target
pre

dic
tio

n

• no overshoot when scaling up: 
ideal rate is an upper bound

• no undershoot when scaling 
down: ideal rate is a lower bound

if the actual scaling is linear, 
convergence takes one step

p0

x



CONVERGENCE STEPS

12

parallelism

initial rate

target
pre

dic
tio

n

• no overshoot when scaling up: 
ideal rate is an upper bound

• no undershoot when scaling 
down: ideal rate is a lower bound

if the actual scaling is linear, 
convergence takes one step

p0 p1

x

x



CONVERGENCE STEPS

12

parallelism

initial rate

target
pre

dic
tio

n

• no overshoot when scaling up: 
ideal rate is an upper bound

• no undershoot when scaling 
down: ideal rate is a lower bound

ac
tu

al
if the actual scaling is linear, 

convergence takes one step

p0 p1

x

x



13

In practice, rates are 
commonly sub-linear 
due to other overheads 
(e.g. worker coordination).

parallelism

initial rate

target

x

pre
dic

tio
n

x

p0 p1

CONVERGENCE STEPS



13

In practice, rates are 
commonly sub-linear 
due to other overheads 
(e.g. worker coordination).

parallelism

initial rate

target

x

pre
dic

tio
n

x
actual

p0 p1

CONVERGENCE STEPS



13

In practice, rates are 
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due to other overheads 
(e.g. worker coordination).

parallelism

initial rate

target

x

pre
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tio
n

x
actual

x error

when the actual scaling is sub-linear, 
convergence takes more than one steps p0 p1
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In practice, rates are 
commonly sub-linear 
due to other overheads 
(e.g. worker coordination).

parallelism

p0

initial rate

target

p1

pre
dic

tion

actual

x
x

p2

In our experiments, DS2 took 
up to three steps to converge 

for complex queries.

x

p3

CONVERGENCE STEPS
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DS2 operates online in a reactive setting

Instrumented 
stream processor

Scaling Manager Scaling Policy

Metrics 
Repository

invoke

re-scale job

report metrics

monitor

pull metrics

decision

Timely dataflow

Apache Flink
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18

wordcount

Apache Flink 
savepoint and 

reconfiguration 
takes ~30s

DS2 converges in 
two steps for 
both operators

DS2 reacts 3s 
after the target 

rate has changed

Target rate:  2.000.000 rec/s
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RECAP
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Observed metrics threshold-
based policies can lead to 

oscillations, misconfiguration 
and slow convergence.

DS2 uses instrumentation to 
measure true processing and 

output rates and estimate 
parallelism for all operators at once.

Stream 
processor

Scaling Manager Scaling Policy

Metrics 
Repositor

invoke

re-scale job

report metrics

monitor

pull metrics

decision

Timely dataflow

DS2 makes fast and accurate 
scaling decisions and converges in 
up to three steps even for non-

linear, complex dataflows.

https://github.com/strymon-system/ds2
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