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Video Recordings are Ubiquitous

Massive video recordings are happening 
everywhere
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Key Application: Querying Objects in Videos

• Find all trucks among traffic videos in a city last week
• Find all people in garage videos in a company last night
à Query execution requires running detector & classifier CNNs 
à It is slow and costly on massive videos
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Ingest Time Analysis: Too Costly

• Analyzing live videos at ingest time can make query fast
• But it is costly
• Potentially wasteful (ingest all garage cameras vs. query one)
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Ingest Query

Object Class → [Frames]

$380/month/stream



Query Time Analysis: Too Slow
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Query

1. Kang et al., NoScope, PVLDB’17

• Analyzing videos at query time can save cost
• Frame down-sampling / skipping
• CNN specialization / cascading
• But it still very slow (5 hr for a month-long video [1])

Ingest



Our Goal

Enable low-latency and low-cost querying over 
large historical video datasets

6

CNN,
Accuracy target

Low-Latency and Low-Cost 
Video Querying System 

Query 
object class

FramesFrames

Frames with trucks



Background: Convolutional Neural Networks

• A Convolutional Neural Network (CNN) outputs the 
probability of each class

• Based on the extracted features (high-level representation)
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Focus System: Low-latency query with 
low-cost ingest
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ØApproximate indexing via cheap ingest
ØRedundancy elimination for fast query
ØTrading off ingest cost vs. query latency
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low-cost ingest

9



Low-Cost Ingestion: Cheaper CNNs

• Process video frames with a cheap CNN at ingest time
• Compressed and Specialized CNN: fewer layers / weights 

and are specialized for each video stream
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Low-Cost Ingestion: Cheaper CNNs

• Process video frames with a cheap CNN at ingest time
• Compressed and Specialized CNN: fewer layers / weights 

and are specialized for each video stream
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Challenge: Cheap CNNs are Less Accurate 

• Cheaper CNNs are less accurate than                           
the expensive CNNs 

The best result from the expensive CNN is within the 
top-K results of the cheaper CNN
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Rank Expensive CNN Cheap CNN
1 Truck Moving Van
2 Moving Van Airplane
3 Passenger Car Truck

4 Recreational 
vehicle Passenger Car



Recall, Precision and Top-K Results
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ResNet18 ResNet18 (4 fewer layers)
ResNet18 (6 fewer layers) >99% Recall

Recall: Fraction of relevant objects that are selected
Precision: Fraction of selected objects that are relevant
Ground-truth CNN: YOLOv2

Cheaper CNN →Lower Recall



Solution: Split Ingest- and Query-time Work
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Query-time work is done 
only on queried videos 
(reduce waste)

Object Class → [Objects]
Object → Frame



ØApproximate indexing via cheap ingest
ØRedundancy elimination for fast query
ØTrading off ingest cost vs. query latency
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Low-Latency Query: Redundancy Elimination

• Approximate indexing ➔ non-trivial work at query time
• A larger K ➔ more query-time work 

• Images with similar feature vectors are visually similar
• Minimize the work at query time ➔ clustering similar objects 

based on the extracted features
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Adding Feature-based Clustering
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Adding Feature-based Clustering
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Object Class → [Clusters]
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Reduce redundant work at 
query time

Features Clusters



ØApproximate indexing via cheap ingest
ØRedundancy elimination for fast query
ØTrading off ingest cost vs. query latency

Focus System: Low-latency query with 
low-cost ingest
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Ingest Cost vs. Query Latency
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• Parameter selection → trading off ingest cost vs. query latency
• The cheap CNN at ingest time
• K in the top-K approximate indexing
• Clustering threshold for feature-based clustering
• … / A set of configurations 

Low latency
Rarely queried



Experimental Setup 

• Video Datasets
• 11 live traffic and enterprise videos
• Each video stream is evaluated for 12 hours

• Accuracy Targets
• 99% recall and 99% precision w.r.t. YOLOv2 

• Baselines
• Ingest-heavy: Analyzes all frames with YOLOv2 at ingest time and 

stores the inverted index for query
• NoScope [VLDB’17]: A query-optimized system that analyzes frames     

only at query time
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Average End-to-End Performance
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Effect of Different Components
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Both techniques are important to Focus



Demo
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More in the Paper

•Characterization of real-world videos
• Implementation details
•Other applications

•Process large and growing data with CNNs, 
such as audio, bioinformatics, geoinformatics

•More results 
•Trade-off alternatives
•Sensitivity studies
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Key Takeaways

• Problem: Querying objects in massive videos is challenging

• Our Approach: Low-latency query with low-cost ingest

• Key Results
• 57X (up to 92X) cheaper than ingest-time-only solutions

• 162X (up to 607X) faster than state-of-the-art, query-time-only solutions
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