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Goal: upquery restores state as if present all along.
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Upquery response is a snapshot of state
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Solution: Maintain order of upquery response and surrounding 
updates, despite lack of global coordination.
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Goal: upquery restores state as if present all along.
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resulting state
respects total order
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resulting state
violates total order

More complex cases: merged upquery responses, evictions (Paper).
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1. Concurrent upqueries and forward processing — races!

2. Update processing may require absent state

COUNT

3

2

…

absent

Must maintain correctness under concurrency!

Drop updates that touch absent 
state, future upquery repeats them.

 (see Paper)
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Noria implementation

Data-flow graph

MySQL adapter

• 45k lines of Rust + 15k libraries

• RocksDB for base table storage

• ZooKeeper for leader election

Transform
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Evaluation

Amazon EC2 c5.4xlarge instance (16 vCPUs)

Open-loop clients, measuring latency & throughput

Setup

multi-machine experiments 
comparison with differential dataflow } see Paper
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Case study: Lobsters (http://lobste.rs)

‣Ruby-on-Rails application 
with MySQL backend
‣Hand-optimized by 

developers to pre-compute 
aggregations
‣Noria data-flow with  

235 operators, 35 views
‣Emulate production load

http://lobste.rs
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How does Noria compare to alternatives?

Noria outperforms an in-memory key-
value store and simplifies its interface.
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95% reads, 5% writes 
‣No TX, all in-memory
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Can Noria change queries without downtime?
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3 ⭐

 1.5 ⭐
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JOIN

COUNT

Ratings
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⭐
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Can Noria change queries without downtime?

instantaneous transition, 
no downtime for writes

80% of reads from new view proceed 
without upquery after 1 second

Noria achieves downtime-free 
query change with partial state.

Be
tte

r

‣Zipf-distributed story ID, 95% reads; 
2M existing votes at transition
‣Old view reads are live throughout
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Noria — Summary

(see our demo at poster #37 today!)

https://pdos.csail.mit.edu/noria

