
Dynamic, partially-stateful data-flow for 
high-performance Web applications

Jon Gjengset

Jonathan Behrens Lara Timbó Araújo Martin Ek

Eddie Kohler M. Frans Kaashoek Robert Morris

Malte Schwarzkopf

Noria

!2

Frontend
!2

🌎 Frontend
!2

Backend

🌎 Frontend
!2

 Backend

Frontend

!3

 Backend

Frontend

!3

Stories Votes

 Backend

Frontend

!4

Stories Votes

JOIN

COUNT

FILTER
Query

 Backend

Frontend

!4

Stories Votes

JOIN

COUNT

FILTER
Query

 Backend

Frontend

!4

Stories Votes

90% reads
10% writes

JOIN

COUNT

FILTER
Query

 Backend

Frontend

!4

Stories Votes

Slow reads,
repeated work!

☹
90% reads

10% writes
JOIN

COUNT

FILTER
Query

Frontend

!5

Stories Votes

Precomputed results

2
2

JOIN

COUNT

FILTER
Query

Frontend

!5

Stories Votes

Precomputed results

2
2

READ

JOIN

COUNT

FILTER
Query

Frontend

!5

Stories Votes

Precomputed results

2
2

READ

JOIN

COUNT

FILTER
Query

Store in base table? 
— manual, slow.

Frontend

!5

Stories Votes

Precomputed results

2
2

READ

JOIN

COUNT

FILTER
Query

Store in base table? 
— manual, slow.

memcached? 
— complex  
[Facebook NSDI’13].

Frontend

!5

Stories Votes

JOIN

COUNT

FILTER

2
2

Streaming 
data-flow?

Store in base table? 
— manual, slow.

memcached? 
— complex  
[Facebook NSDI’13].

Frontend

!6

Stories Votes

JOIN

COUNT

FILTER

2
2

Streaming 
data-flow?

INSERT

Frontend

!6

Stories Votes

JOIN

COUNT

FILTER

2
2

Streaming 
data-flow?

3

Frontend

!6

Stories Votes

JOIN

COUNT

FILTER

Materialized 
view

2
2

Streaming 
data-flow?

3

Frontend

!6

Stories Votes

JOIN

COUNT

FILTER

Materialized 
view

2
2

Fast reads.
Efficient writes.
Parallelizes well.

Streaming 
data-flow?

3

Frontend

!7

Stories VotesChallenges

JOIN

COUNT

FILTER

2
3

1
3

2

Frontend

!7

Stories Votes

‣Change queries? Restart!

Challenges
State-of-the-art 
data-flow systems:

JOIN

COUNT

FILTER

2
3

1
3

2

Frontend

!7

Stories Votes

‣Change queries? Restart!

Challenges
State-of-the-art 
data-flow systems:

JOIN

COUNT

FILTER
SUM 4

2
#

$

4
2

#

$

2
3

2

3
1

Frontend

!7

Stories Votes

‣Change queries? Restart!
‣Memory footprint? Grows!

Challenges
State-of-the-art 
data-flow systems:

JOIN

COUNT

FILTER
SUM 4

2
#

$

4
2

#

$

2
3

2

3
1

Frontend

!8

Stories VotesNoria

Frontend

!8

Stories Votes

JOIN

COUNT

FILTER

3
2

Noria

3

2
1

Frontend

!8

Stories Votes

JOIN

COUNT

FILTER

3
2

‣Change queries? Live.

Noria

3

2
1

Frontend

!8

Stories Votes

JOIN

COUNT

FILTER

3
2

‣Change queries? Live.

Noria

4
2

#

$

4
2

#

$

SUM

3

2
1

Frontend

!8

Stories Votes

JOIN

COUNT

FILTER

3
2

‣Change queries? Live.
‣Memory footprint? Bounded.

Noria

4
2

#

$

4
2

#

$

SUM

3

2
1

Frontend

!8

Stories Votes

JOIN

COUNT

FILTER

3

‣Change queries? Live.
‣Memory footprint? Bounded.

Noria

4
2

#

$

4
2

#

$

SUM

3

Frontend

!8

Stories Votes

JOIN

COUNT

FILTER

3

‣Change queries? Live.
‣Memory footprint? Bounded.
‣No global coordination.

Noria

4
2

#

$

4
2

#

$

SUM

3

New model:  
Partially-stateful data-flow

!9

!10

Stories Votes

JOIN

COUNT

FILTER

3

1
3

2

2

Partially-stateful  
data-flow

Data-flow state is partial:
entries for some keys are absent ().

Frontend

!10

Stories Votes

JOIN

COUNT

FILTER

3

1
3

2

Partially-stateful  
data-flow

Data-flow state is partial:
entries for some keys are absent ().

Frontend

!10

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful  
data-flow

Data-flow state is partial:
entries for some keys are absent ().

Frontend

!10

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful  
data-flow

Data-flow state is partial:
entries for some keys are absent ().

Lower memory footprint.

Frontend

!10

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful  
data-flow

Data-flow state is partial:
entries for some keys are absent ().

Lower memory footprint.
No need to update absent entries.

Frontend

!10

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful  
data-flow

Data-flow state is partial:
entries for some keys are absent ().

Lower memory footprint.
No need to update absent entries.
Enables live data-flow changes.

Frontend

!11

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful  
data-flow: upqueries

READ

Frontend

!11

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful  
data-flow: upqueries

??? Need to fill absent entry!
READ

Frontend

!11

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful  
data-flow: upqueries

??? Need to fill absent entry!
READ

Solution: upquery through data-flow.
• Compute missing entry from 

upstream state

Frontend

Frontend

!12

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful  
data-flow: upqueries

Solution: upquery through data-flow.
• Compute missing entry from 

upstream state
• Response fills missing entry

READ

Frontend

!12

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful  
data-flow: upqueries

Solution: upquery through data-flow.
• Compute missing entry from 

upstream state
• Response fills missing entry

2

READ

!13

Start new views and operator
state empty, fill via upqueries.

Partial state enables
live data-flow changes

Stories Votes

JOIN

COUNT

FILTER

3
2

3

2
1

Frontend

!13

#

$

SUM

#

$

Start new views and operator
state empty, fill via upqueries.

Partial state enables
live data-flow changes

Stories Votes

JOIN

COUNT

FILTER

3
2

3

2
1

Frontend

!13

#

$

SUM

#

$

Start new views and operator
state empty, fill via upqueries.

Partial state enables
live data-flow changes

Stories Votes

JOIN

COUNT

FILTER

3
2

3

2
1

Frontend

READ #

!13

#

$

SUM

#

$

Start new views and operator
state empty, fill via upqueries.

Partial state enables
live data-flow changes

Stories Votes

JOIN

COUNT

FILTER

3
2

3

2
1

Frontend

READ #

!13

#

$

SUM

#

$

Start new views and operator
state empty, fill via upqueries.

4

4

Partial state enables
live data-flow changes

Stories Votes

JOIN

COUNT

FILTER

3
2

3

2
1

Frontend

READ #

!14

#

$

SUM

#

$

4

4

Stories Votes

JOIN

COUNT

FILTER

3
2

3

2
1

Frontend

High performance
requires concurrency

!14

#

$

SUM

#

$

4

4

Stories Votes

JOIN

COUNT

FILTER

3
2

3

2
1

Frontend

High performance
requires concurrency

Process operators concurrently.

Read from views concurrently.

Process shards concurrently.

Without global coordination!

!14

#

$

SUM

#

$

4

4

Stories Votes

JOIN

COUNT

FILTER

3
2

3

2
1

Frontend

High performance
requires concurrency

Process operators concurrently.

Read from views concurrently.

Process shards concurrently.

Without global coordination!

!14

#

$

SUM

#

$

4

4

Stories Votes

JOIN

COUNT

FILTER

3
2

3

2
1

Frontend

High performance
requires concurrency

Process operators concurrently.

Read from views concurrently.

Process shards concurrently.

Without global coordination!

Challenges implementing partially-stateful data-flow

!15

Challenges implementing partially-stateful data-flow

!15

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

Challenges implementing partially-stateful data-flow

!15

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

Correctness under concurrency

!16

Goal: upquery restores state as if present all along.

Correctness under concurrency

!16

Goal: upquery restores state as if present all along.

COUNT
2

Correctness under concurrency

!16

Goal: upquery restores state as if present all along.

1
2

COUNT
2

Correctness under concurrency

!16

Goal: upquery restores state as if present all along.

1
2

COUNT
2

Correctness under concurrency

!16

Goal: upquery restores state as if present all along.

1
2

COUNT
2

Correctness under concurrency

!16

Goal: upquery restores state as if present all along.

1
2

Upquery response is a snapshot of state

COUNT
2

2

Correctness under concurrency

!16

Goal: upquery restores state as if present all along.

1
2

Upquery response is a snapshot of state

COUNT
2

2

includes 12

does not include3
3

Correctness under concurrency

!16

Goal: upquery restores state as if present all along.

1
2

Upquery response is a snapshot of state

COUNT
2

2

includes 12

does not include

Solution: Maintain order of upquery response and surrounding 
updates, despite lack of global coordination.

3
3

Upquery responses in total order with updates

!17

Goal: upquery restores state as if present all along.

Upquery responses in total order with updates

!17

Goal: upquery restores state as if present all along.

2
2
3

3

1

resulting state
respects total order

Upquery responses in total order with updates

!17

Goal: upquery restores state as if present all along.

2
2
3

3

1

resulting state
respects total order

2
3
2

2

1

resulting state
violates total order

Upquery responses in total order with updates

!17

Goal: upquery restores state as if present all along.

2
2
3

3

1

resulting state
respects total order

2
3
2

2

1

resulting state
violates total order

More complex cases: merged upquery responses, evictions (Paper).

Challenges implementing partially-stateful data-flow

!18

1. Concurrent upqueries and forward processing — races!

2. Update processing may require absent state

Must maintain correctness under concurrency!

Challenges implementing partially-stateful data-flow

!18

1. Concurrent upqueries and forward processing — races!

2. Update processing may require absent state

COUNT

3

2

…

absent

Must maintain correctness under concurrency!

Challenges implementing partially-stateful data-flow

!18

1. Concurrent upqueries and forward processing — races!

2. Update processing may require absent state

COUNT

3

2

…

absent

Must maintain correctness under concurrency!

Drop updates that touch absent
state, future upquery repeats them.

Challenges implementing partially-stateful data-flow

!18

1. Concurrent upqueries and forward processing — races!

2. Update processing may require absent state

COUNT

3

2

…

absent

Must maintain correctness under concurrency!

Drop updates that touch absent
state, future upquery repeats them.

 (see Paper)

!19

Noria implementation

!19

Noria implementation

!19

Noria implementation

MySQL adapter

!19

Noria implementation

Data-flow graph

MySQL adapter

Transform

!19

Noria implementation

Data-flow graph

MySQL adapter

Transform

!19

Noria implementation

Data-flow graph

MySQL adapter

• 45k lines of Rust + 15k libraries

• RocksDB for base table storage

• ZooKeeper for leader election

Transform

1. Can Noria improve a real web application’s performance?

2. How does Noria compare to alternative approaches?

3. Can Noria change queries without downtime?

!20

Evaluation

1. Can Noria improve a real web application’s performance?

2. How does Noria compare to alternative approaches?

3. Can Noria change queries without downtime?

!20

Evaluation

Amazon EC2 c5.4xlarge instance (16 vCPUs)

Open-loop clients, measuring latency & throughput

Setup

1. Can Noria improve a real web application’s performance?

2. How does Noria compare to alternative approaches?

3. Can Noria change queries without downtime?

!20

Evaluation

Amazon EC2 c5.4xlarge instance (16 vCPUs)

Open-loop clients, measuring latency & throughput

Setup

multi-machine experiments 
comparison with differential dataflow } see Paper

!21

Case study: Lobsters (http://lobste.rs)

http://lobste.rs

!21

Case study: Lobsters (http://lobste.rs)

‣Ruby-on-Rails application 
with MySQL backend

http://lobste.rs

!21

Case study: Lobsters (http://lobste.rs)

‣Ruby-on-Rails application 
with MySQL backend
‣Hand-optimized by

developers to pre-compute
aggregations

http://lobste.rs

!21

Case study: Lobsters (http://lobste.rs)

‣Ruby-on-Rails application 
with MySQL backend
‣Hand-optimized by

developers to pre-compute
aggregations
‣Noria data-flow with  

235 operators, 35 views

http://lobste.rs

!21

Case study: Lobsters (http://lobste.rs)

‣Ruby-on-Rails application 
with MySQL backend
‣Hand-optimized by

developers to pre-compute
aggregations
‣Noria data-flow with  

235 operators, 35 views
‣Emulate production load

http://lobste.rs

!22

Can Noria improve Lobsters’ performance?

!22

Can Noria improve Lobsters’ performance?
Be

tte
r

Better

!22

Can Noria improve Lobsters’ performance?
Be

tte
r

Better

!22

Can Noria improve Lobsters’ performance?
Be

tte
r

Better

!22

Noria with natural queries supports 5x MySQL’s throughput.

Can Noria improve Lobsters’ performance?
Be

tte
r

Better

!23

How does Noria compare to alternatives?
Be

tte
r

Better

!23

How does Noria compare to alternatives?

‣Zipf-distributed story ID, 
95% reads, 5% writes
‣No TX, all in-memory

Be
tte

r

Better

!23

How does Noria compare to alternatives?

‣Zipf-distributed story ID, 
95% reads, 5% writes
‣No TX, all in-memory

Be
tte

r

Better

!24

How does Noria compare to alternatives?
Be

tte
r

Better

‣Zipf-distributed story ID, 
95% reads, 5% writes
‣No TX, all in-memory

!24

How does Noria compare to alternatives?
Be

tte
r

Better

‣Zipf-distributed story ID, 
95% reads, 5% writes
‣No TX, all in-memory

!24

How does Noria compare to alternatives?

Noria outperforms an in-memory key-
value store and simplifies its interface.

Be
tte

r

Better

‣Zipf-distributed story ID, 
95% reads, 5% writes
‣No TX, all in-memory

3
2

!25

Can Noria change queries without downtime?

JOIN

COUNT

FILTER

StoriesVotes

3
2

!25

Can Noria change queries without downtime?

JOIN

COUNT

FILTER

StoriesVotes

3 ⭐

 1.5 ⭐

AVG

JOIN

COUNT

Ratings
⭐⭐⭐

⭐

⭐⭐

!26

Can Noria change queries without downtime?
Be

tte
r

!26

Can Noria change queries without downtime?

new table & query added

Be
tte

r

!26

Can Noria change queries without downtime?

new table & query added

Be
tte

r

!26

Can Noria change queries without downtime?

new table & query added

Be
tte

r

‣Zipf-distributed story ID, 95% reads;
2M existing votes at transition

!27

Can Noria change queries without downtime?
Be

tte
r

‣Zipf-distributed story ID, 95% reads;
2M existing votes at transition
‣Old view reads are live throughout

!27

Can Noria change queries without downtime?

instantaneous transition, 
no downtime for writes

Be
tte

r

‣Zipf-distributed story ID, 95% reads;
2M existing votes at transition
‣Old view reads are live throughout

!27

Can Noria change queries without downtime?

instantaneous transition, 
no downtime for writes

80% of reads from new view proceed 
without upquery after 1 second

Be
tte

r

‣Zipf-distributed story ID, 95% reads;
2M existing votes at transition
‣Old view reads are live throughout

!27

Can Noria change queries without downtime?

instantaneous transition, 
no downtime for writes

80% of reads from new view proceed 
without upquery after 1 second

Noria achieves downtime-free
query change with partial state.

Be
tte

r

‣Zipf-distributed story ID, 95% reads;
2M existing votes at transition
‣Old view reads are live throughout

• New partially-stateful data-flow model.

• Noria: new web application backend based on data-flow.

• Partial state saves space and allows live change.

• Supports high throughput on one or more machines.

• Open source, try it out!

!28

Noria — Summary

• New partially-stateful data-flow model.

• Noria: new web application backend based on data-flow.

• Partial state saves space and allows live change.

• Supports high throughput on one or more machines.

• Open source, try it out!

!28

https://pdos.csail.mit.edu/noria

Noria — Summary

(see our demo at poster #37 today!)

https://pdos.csail.mit.edu/noria

