
Obladi: Oblivious
Serializable Transactions
in the Cloud

NATACHA CROOKS

MAT THEW BURKE

ETHAN CECCHET TI

S ITAR HAREL

RACHIT AGARWAL

LORENZO ALVIS I

1

This talk

Obladi

a cloud-based transactional key-value store
that supports ACID transactions

but hides from the cloud what, when, and how data is accessed

2

Why Obladi – Cloud Privacy Concerns

Applications are moving to the cloud

Applications store sensitive information

Cloud storage means sharing data with an untrusted party

Cloud services can be the target of hacking, subpoena

3

Protecting sensitive information
Electronic Health Record (EHR) systems

◦ store/manage patient data

◦ underpin large hospitalsMedical Record 1

Medical Record 2

Molly:

Desmond:

4

Protecting sensitive information

Use encryption to hide contents of the
data

Still leaking information about what
data is being accessed

Still leaking information about when
data is being accessed

15/03/18 3.15PM
21/03/18 2.15PM

5

Medical Record 1

Medical Record 2

Molly:

Desmond:

Guaranteeing obliviousness

Hiding
access patterns
(obliviousness)

what data is being accessed

when data is being accessed

how data is being accessed

6

How to maintain functionality?
Large body of work on analytical queries

but no way to run ACID transactions obliviously

This talk:

How to obliviously and efficiently implement serializable
ACID transactions on top of untrusted cloud storage

7

Security Guarantees
The adversary should learn no information about

1. the data accessed by ongoing transactions

2. the type of operations in ongoing transactions

3. the size of ongoing transactions

4. the outcome of ongoing transactions

Begin

Read(x)

Read(y)

Commit

Begin

Write(a)

Write(b)

Abort

Write(c)

8

Threat Model

Trusted Proxy
Clients

Clients

Trusted
communication

Untrusted
Cloud Storage

Untrusted
Communication

Doctors communicating over hospital LAN Cloud storage (Dynamo,S3, etc.) accessed over WAN

Obladi adopts the trusted proxy model

9

Failure Model

But that cloud storage is reliable

10

Unreliable
Proxy

Clients

Clients
Reliable Cloud

Storage

Obladi assumes clients and proxy can fail

Obladi’s security in a nutshell

Workload Independence
Obladi ensures that the request pattern sent to the untrusted

cloud is independent of ongoing transactions

11

The paradox of transactions

Transactions make
improving efficiency

easier

Transactions make
guaranteeing obliviousness

harder

ACID must hold
at commit time

only

Isolation and durability
add structure

to read/write operations

12

Oblivious RAM [Goldreich1996]

Obladi builds on Oblivious RAM (ORAM)

ORAM hides access patterns for read and write
operations by making requests to untrusted storage

independent of workload

13

R W RR

R W R

ORAM from 1000 feet

Read (x)

Write(y)

Generate physical read/write requests from logical operations

Send requests to (encrypted) dummy data to hide what is being requested

R

14

Challenges of Transactional ORAM
ORAM guarantees workload independence for read/write operations.

How can we preserve workload independence but also

1) Guarantee Isolation and Atomicity?

2) Guarantee Consistency and Durability?

3) Guarantee good performance?

No concurrency control

Write-back ordering for
security vs for durability

Limited Concurrency

15

Delayed Visibility
Obladi centers its design around the notion of

delayed visibility

On the one hand, ACID guarantees apply only when transactions commit

On the other, commit operations can be delayed

16

The secret sauce: epochs

B

R (x)

C

B

W(a)

R(b)

C

W(b)

R(x)

Epoch 1

Epoch 2

B

Obladi uses delayed visibility to partition
transaction into fixed-sized epochs

Delays commit notifications until the
epoch ends

R(y)

B

R(a)

C

W(b)

17

The secret sauce: epochs

ACID guarantees only hold for committed
transactions

Enforce durability and consistency at
epoch boundaries only

Consistency
Durability

18

B

R (x)

C

B

W(a)

R(b)

C

W(b)

R(x)

Epoch 1

Epoch 2

B

R(y)

B

R(a)

C

W(b)

The secret sauce: epochs

Within an epoch, Obladi executes transactions
at the trusted proxy, buffering writes until

epoch ends

Proxy

Version Cache

a

bb

19

Epoch 1

B

R (x)

C

B

W(a)

R(b)

C

W(b)

Epoch 1

R(y)

B

R(a)

C

W(b)

Proxy

The secret sauce: epochs

1. Reduces number of requests sent to ORAM
Only write the last version of every key

2. Implement multi-versioned concurrency
control algorithm on top of single-versioned

ORAM
Better support for read-only transactions

a

bb

Version Cache

20

Delayed visibility improves performance
B

R (x)

C

B

W(a)

R(b)

C

W(b)

Epoch 1

R(y)

B

R(a)

C

W(b)

The secret sauce: epochs

Delayed visibility should not increase contention

Should allow transactions in the same epoch to
see each other’s effects

Obladi chooses a concurrency control that
optimistically exposes uncommitted writes to

ongoing transactions

21

B

R (x)

C

B

W(a)

R(b)

C

W(b)

Epoch 1

R(y)

B

R(a)

W(b)

The secret sauce: epochs

The fixed structure of epochs helps
guarantee workload independence.

ORAM observes the same sequence of
reads followed by the buffered writes Writes

R (x)

Epoch 1

R(y) PAD PAD

R(b) R(a)

22

How to guarantee good performance?

Data Handler

Oram Executor

Untrusted Cloud
Storage

Send batches of requests to ORAM

But ORAM constructions are largely sequential

23

R (x) R(b) R(a)

PAD W(a) W(b)

Proxy

Parallelising ORAM

How can we parallelise ORAM?

For correctness: parallelization should be linearizable
For security: parallelization should be workload independent

24

Data Handler

Oram Executor

Untrusted Cloud
StorageR (x) R(b) R(a)

PAD W(a) W(b)

Proxy

Parallelising ORAM

R(b)

Recall: breakdown logical operations into
physical read/writes to cloud storage

25

R R W W W R

Guaranteeing linearizability

To ensure linearizability
Execute operations that do not have data dependencies in parallel

Data-dependent operations must be executed sequentially

26

R(b) R R W W W R

Dependencies violate independence

Wait for data dependencies to be satisfied introduces timing channels
Only exist between real objects, not dummies

Delaying reads for real objects causes delay, dummy objects don’t

27

R(b) R R W W W R

Introduces side-channel

Must wait for all potential data dependencies
Can exist between any pairs of reads and writes

Never secure to execute reads and writes in parallel

28

R(b) R R W W W R

Delayed visibility to the rescue

Delayed visibility allows ORAM to be consistent at epoch boundaries only
Writes can be safely delayed to epoch end

29

R(b) R R W W W R

Delayed visibility to the rescue

Separate ORAM execution into a read phase and a write phase

Read Phase: reads all necessary blocks
Write Phase: writes all necessary blocks

30

R

R R W W

R W

WR R

R(b)

Delayed visibility to the rescue

Executing each phase in turn obscures data dependencies
Still allows high concurrency

31

R

R R W W

R W

WR R

R(b)

How to guarantee durability?
Must ensure recovery to a consistent state

No partially executed transactions are included

Traditionally achieved through redo/undo logging
For consistency: pretend partial transactions never happened

For security: cannot “undo” what the adversary observed

May lead to access sequences that violate workload independence

32

More details in the paper

Durability and recovery logic details

Additional optimisations for performance

Discussion of our chosen ORAM construction: RingORAM [Ren15]

Formal proof of security

33

Evaluation

c5.4xlarge AWS instances. 10 ms latency between proxy and storage
34

TPC-C

(10 Warehouses)

SmallBank

(1 million records)

FreeHealth

(7000 patients, 10 hospitals)

Applications
Obladi

(Our system)

NoPriv Baseline

(Shares concurrency logic with Obladi)

MySQL 5.7 InnoDB Baseline

(Server co-located with clients)

Baselines

Performance Results: The Good

Obladi is slow, but not too slow

Between 5x and 9x lower
throughput for contention-

bottlenecked TPC-C and FreeHealth

12x lower throughput for resource-
bottlenecked SmallBank

35

5x

12x

9x

Performance Results: The Bad

Batching significantly increases latency

Up to 70x on TPC-C

Better on other applications because of
smaller write batches

36

70x

20x 17x

Performance Results: The Ugly

Performance is sensitive to good
tuning of epoch size

If too low, transactions cannot finish
If too high, idle time

37

Performance Results: The Ugly

Performance is sensitive to good
tuning of epoch size

If too low, transactions cannot finish
If too high, idle time

May reveal type of application!

38

Conclusion

Obladi, a cloud-based transactional key-value store
that obliviously supports ACID transactions using

delayed visibility

Any questions?

40

Backup

41

	Obladi: Oblivious Serializable Transactions in the Cloud
	This talk
	Why Obladi – Cloud Privacy Concerns
	Protecting sensitive information
	Protecting sensitive information
	Guaranteeing obliviousness
	How to maintain functionality?
	Security Guarantees
	Threat Model
	Failure Model
	Obladi’s security in a nutshell
	The paradox of transactions
	Oblivious RAM [Goldreich1996]
	ORAM from 1000 feet
	Challenges of Transactional ORAM
	Delayed Visibility
	The secret sauce: epochs
	The secret sauce: epochs
	The secret sauce: epochs
	The secret sauce: epochs
	The secret sauce: epochs
	The secret sauce: epochs
	How to guarantee good performance?
	Parallelising ORAM
	Parallelising ORAM
	Guaranteeing linearizability
	Dependencies violate independence
	Introduces side-channel
	Delayed visibility to the rescue
	Delayed visibility to the rescue
	Delayed visibility to the rescue
	How to guarantee durability?
	More details in the paper
	Evaluation
	Performance Results: The Good
	Performance Results: The Bad
	Performance Results: The Ugly
	Performance Results: The Ugly
	Conclusion
	Backup�

