
An Analysis of Network-Partitioning Failures in Cloud Systems

Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, Samer Al-Kiswany

1

Highlights

• Network-partitioning failures are catastrophic, silent, and deterministic

• Surprisingly, partial partitions cause large number of failures

• Debunk two common presumptions
1. Admins believe that systems can tolerate network partitions
2. Designers believe isolating one side of the partition is enough

• NEAT: a network partitioning testing framework
• Tested 7 systems 32 failures

2

Motivation
• High availability: systems should tolerate infrastructure failures

(Devices, nodes, network, data centers)

• We focus on network partitioning
• Partitioning faults are common

(once every two weeks at Google[1], 70% of downtime at Microsoft[2], once every 4 days
at CENIC[3])

• Complex to handle

3

What is the impact of network partitions on modern systems?

[1] Govindan et al, "Evolve or Die: High-Availability Design Principles Drawn from Googles Network Infrastructure”, ACM SIGCOMM 2016
[2] Gill et al, “Understanding network failures in data centers: measurement, analysis, and implications”, ACM SIGCOMM 2011
[3] Turner et al, “California fault lines: understanding the causes and impact of network failures”, ACM SIGCOMM 2010

In-depth analysis of production failures

Studied end-to-end failure sequence

• Study the impact of failures

• Characterize conditions and sequence of events

• Identify opportunities to improve fault tolerance

4

New system
configuration

Network Partition System reaction
(Leader election, reconfig, …)

Failure
Visible to users

User workload

• Studied 136 high-impact network-partitioning failures from 25
systems
• 104 failures are user-reported failures

• 32 failures are discovered by NEAT

• Studied failure report, discussion, logs, code, and tests

• Reproduced 24 failures to understand intricate details

5

Methodology

Highlights

• Network partitioning failures are catastrophic, silent, and easy to manifest

• Surprisingly, partial partitions cause large number of failures

• Debunk two common presumptions
1. Admins believe that systems can tolerate network partitions
2. Designers believe isolating one side of the partition is enough

• NEAT: a network partitioning testing framework
• Tested 7 systems 32 failures

6

Example – Dirty read in VoltDB

7

Master Replica

Network partition

read (key)

key = Y
ReplicaMaster

Dirty
read

Update locally

Leader
election

Event1: Network partition

Event2: Write to minority

Event3: Read from minority

key X
key Xkey Xkey Y

8

Event 1: Network partition

Event 2: Write to minority

Event 3: Read from minorityMajority (80%) of the failures are catastrophic

Catastrophic failure
• Data loss, dirty read, broken locks,

double dequeue, corruption

Majority (90%) of the failures are silent

Dirty
read

Master Replica

Network partition

read (key)

key = Y

ReplicaMaster

Update locally

key Y key X

Failure impact

Surprisingly, partition failures are deterministic, silent, and catastrophic

Dirty
read

Master Replica

Network partition

read (key)

key = Y

ReplicaMaster

Update locally

9

70% of the failures require 3 or fewer
events

Require 3 events

Timing: should occur before the old
master shuts down

Old master shuts down

key Y key X

Multiple events should happen in a
specific order

Majority (80%) are deterministic or
have known timing constraints

Timing and ordering

ti
m

eo
u

t

Event 1: Network partition

Event 2: Write to minority

Event 3: Read from minority

10

Configuration
change

Data
consolidation

Request routing

Replication
protocol

40%

20%

13%

13%

Two leaders

Bad leader

Double voting

Conflicting
election

57%

20%

18%

4%

Leader election

Others

14%

20%

Failures 59% of the failures are due to design flaws

• Early design reviews can help
• High-impact area that needs

further research

Failure source

Highlights

• Network partitioning failures are catastrophic, silent, and easy to manifest

• Surprisingly, partial partitions cause large number of failures

• Debunk two common presumptions
1. Admins believe that systems can tolerate network partitions
2. Designers believe isolating one side of the partition is enough

• NEAT: a network partitioning testing framework
• Tested 7 systems 32 failures

11

12

Group 1 Group 2

Group 3

Network partition

Partial network partitioning

Network partition types
• Complete
• Partial
• Simplex

Partial network partition - double execution in MapReduce

13

Task

Resource
Manager

User

NodeMgr

NodeMgr

AppMaster

NodeMgr

start AppMaster

Partial network partition - double execution in MapReduce

14

Resource
Manager

User

AppMaster

NodeMgr

NodeMgr

Partition

Start Another AppMaster

AppMaster

• Double execution and data corruption

NodeMgr

AppMaster
has failed

Partial network partition - double execution in MapReduce

15

Resource
Manager

User

AppMaster

NodeMgr

NodeMgr

AppMaster

• Double execution and data corruption
• Confuses the user

NodeMgr

Partition

16

• Leads to inconsistent view of system state
• Partial partitions are poorly understood and tested

Partial partitioning leads to 28% of the failures

Partial network partitioning

• Affects leader election, scheduling,
data placement, and configuration change

Group 1 Group 2

Group 3

Network
partition

Highlights

• Network partitioning failures are catastrophic, silent, and easy to manifest

• Surprisingly, partial partitions cause large number of failures

• Debunk two common presumptions
1. Admins believe that systems can tolerate network partitions
2. Designers believe isolating one side of the partition is enough

• NEAT: a network partitioning testing framework
• Tested 7 systems 32 failures

17

Debunks two presumptions

• Admins believe systems with data redundancy can tolerate partitioning

Action: low priority for repairing ToR switches[1]

• Systems restrict client access to one side to eliminate failures

18[1] Phillipa et al, “Understanding network failures in data centers: measurement, analysis, and implications” in OSDI’14

Reality: 83% of the failures occur by isolating a single node

Reality: 64% of the failures require no client access or access to one side only

Other findings

• Failures in proven protocols are due to optimizations

• Majority (83%) of the failures can be reproduced with 3 nodes

• Majority (93%) of the failures can be reproduced through tests

19

Highlights

• Network partitioning failures are catastrophic, silent, and easy to manifest

• Surprisingly, partial partitions cause large number of failures

• Debunk two common presumptions
1. Admins believe that systems can tolerate network partitions
2. Designers believe isolating one side of the partition is enough

• NEAT: a network partitioning testing framework
• Tested 7 systems 32 failures

20

NEtwork pArtitioning Testing framework (NEAT)

• Supports all types of network partitions

• Simple API

21

client1.createSemaphore(1)

side1 = asList(S1, S2, client1);

side2 = asList(S3, client2);

netPart = Partitioner.complete(side1, side2);

assertTrue(client1.sem_trywait());

assertFalse(client2.sem_trywait());

Partitioner.heal(netPart);

S2 S3S1

Client1 Client2

Network partition

acquire() acquire()

Apache Ignite
double locking failure

NEAT design

22

Client 1 Client 2

Server
1

Server
2

Server
3

Test
Engine

N
et

 P
ar

ti
ti

o
n

er
Run target system

Issue client operations

C
lie

n
t

D
ri

ve
r

• Orders client operations
• Injects and heals partitions

• OpenFlow
• iptables

Testing with NEAT

• We tested 7 systems using NEAT

• Discovered 32 failures 30 catastrophic
• Confirmed: 12

23

System # failures
found

ActiveMQ 2
Ceph 2
Ignite 15

Infinispan 1
Terracotta 9
MooseFS 2

DKron 1

Concluding remarks

• Further research is needed for network partition fault tolerance

Specially partial partitions

• Highlight the danger of using unreachability as an indicator of node crash

• Identify ordering, timing, network characteristics to simplify testing

• Identify common pitfalls for developers and admins

• NEAT: network partitioning testing framework

https://dsl.uwaterloo.ca/projects/neat/
24

https://dsl.uwaterloo.ca/projects/neat/

