%@ WATERLOO

An Analysis of Network-Partitioning Failures in Cloud Systems

Ahmed Alguraan, Hatem Takruri, Mohammed Alfatafta, Samer Al-Kiswany

Highlights
Network-partitioning failures are catastrophic, silent, and deterministic

Surprisingly, partial partitions cause large number of failures

Debunk two common presumptions
1. Admins believe that systems can tolerate network partitions
2. Designers believe isolating one side of the partition is enough

NEAT: a network partitioning testing framework
* Tested 7 systems = 32 failures

Motivation

* High availability: systems should tolerate infrastructure failures
(Devices, nodes, network, data centers)

* We focus on network partitioning

 Partitioning faults are common

(once every two weeks at Google[1], 70% of downtime at Microsoft[2], once every 4 days
at CENIC[3])

 Complex to handle

What is the impact of network partitions on modern systems?

[1] Govindan et al, "Evolve or Die: High-Availability Design Principles Drawn from Googles Network Infrastructure”, ACM SIGCOMM 2016
[2] Gill et al, “Understanding network failures in data centers: measurement, analysis, and implications”, ACM SIGCOMM 2011 3
[3] Turner et al, “California fault lines: understanding the causes and impact of network failures”, ACM SIGCOMM 2010

In-depth analysis of production failures

Studied end-to-end failure sequence User workload
I
O O @ -@
Network Partition System reaction New system Failure
(Leader election, reconfig, ...) configuration Visible to users

e Study the impact of failures
e Characterize conditions and sequence of events

* |dentify opportunities to improve fault tolerance

cassandra hazelcast red|s

Methodology &

 Studied 136 high-impact network-partitioning failures from 25 CEDPN £ 5 05 elastic
systems ‘) §g
* 104 failures are user-reported failures LAD Apach:
p mongoDB lﬁ Zookeeper kqfka

e 32 failures are discovered by NEAT

EEEEEEEE

* Studied failure report, discussion, logs, code, and tests HBHSEA
S &8ss VOLTDB
* Reproduced 24 failures to understand intricate details ;ngrjem WrICIk

i Inﬁnic N m

chronos: 5 TERRACOTTA

SSSSSSSSS

Highlights
* Network partitioning failures are catastrophic, silent, and easy to manifest

e Surprisingly, partial partitions cause large number of failures

 Debunk two common presumptions
1. Admins believe that systems can tolerate network partitions
2. Designers believe isolating one side of the partition is enough

* NEAT: a network partitioning testing framework
* Tested 7 systems = 32 failures

Example — Dirty read in VoltDB

\C “0

Write (key,
Write fails M
read (key)
key Y _
Dirty Update locally
read

Network partltlon

key

Leader
eIectlon

\\

lica

Eventl: Network partition
Event2: Write to minority

Event3: Read from minority

Write (key, Y)

. . Write fails M
Failure impact e

Master Replica
key =Y _

Update locally

» Catastrophic failure

 Data loss, dirty read, broken locks,
double dequeue, corruption

r

Majority (80%) of the failures are catastrophic

\. J

é N
Majority (90%) of the failures are silent

g J

-- Network partition
e

Event 1: Network partition
Event 2: Write to minority

Event 3: Read from minority

» Require 3 events D"W Update locally

Write (key, Y)
. _ Write fails M
Timing and ordering _reten M -
aster eplica
key =Y _ i

Network partition

p
70% of the failures require 3 or fewer -- ey

_events)

; 3 Event 1: Network partition
Multiple events should happen in a =l Event 2: Write to minority
specific order S

\ / £l Event 3: Read from minority

é N -

Majority (80%) are deterministic or 0ld master shuts down
have known timing constraints —

\. / Timing: should occur before the old

master shuts down

Surprisingly, partition failures are deterministic, silent, and catastrophic

Failure source
/20? Bad leader
.

40%
Conflguratlon 4% Conflicting
20% — change election
14% Data
consolidation

13% —
Request routing

13%

[59% of the failures are due to design flaws }

N Replication Early design reviews can help
20% protocol . .
* High-impact area that needs

further research

10

Highlights
* Network partitioning failures are catastrophic, silent, and easy to manifest

 Surprisingly, partial partitions cause large number of failures

 Debunk two common presumptions
1. Admins believe that systems can tolerate network partitions
2. Designers believe isolating one side of the partition is enough

* NEAT: a network partitioning testing framework
* Tested 7 systems = 32 failures

11

Partial network partitioning

Network partition types Network partition

* Complete
e Partial
e Simplex

Group 2

12

Partial network partition - double execution in MapReduce

Y
)

NodeMgr

>
Resource | start AppMaster
Manager

ﬁ/

Task

[
8 m
N

User

| AppMaster

S)

N

13

Partial network partition - double execution in MapReduce

Y
N
AppMaster Partition P

has failed <> () J
‘ Manager ©
Start Another AppMasteru ~—
——_—_— - ..

AppMaster :

8 |
— o
N

User

N~

* Double execution and data corruption

14

Partial network partition - double execution in MapReduce

Y
N
Partition Y

— — ==
Manager ©
—
Y -
N ~

+ AppMaster :

[
N T
N
N~

* Double execution and data corruption
e Confuses the user 15

Partial network partitioning

Network
[Partial partitioning leads to 28% of the failures J Gé% P en Gré%
==
* Affects leader election, scheduling,

data placement, and configuration change \

* Leads to inconsistent view of system state
* Partial partitions are poorly understood and tested

Group 3

it
N\

Highlights

* Debunk two common presumptions
1. Admins believe that systems can tolerate network partitions
2. Designers believe isolating one side of the partition is enough

Debunks two presumptions

 Admins believe systems with data redundancy can tolerate partitioning
» Action: low priority for repairing ToR switches[1]

[Reality: 83% of the failures occur by isolating a single node]

» Systems restrict client access to one side to eliminate failures

[Reality: 64% of the failures require no client access or access to one side only]

[1] Phillipa et al, “Understanding network failures in data centers: measurement, analysis, and implications” in OSDI’14 18

Other findings

* Failures in proven protocols are due to optimizations
* Majority (83%) of the failures can be reproduced with 3 nodes

* Majority (93%) of the failures can be reproduced through tests

Highlights
* Network partitioning failures are catastrophic, silent, and easy to manifest

e Surprisingly, partial partitions cause large number of failures

 Debunk two common presumptions
1. Admins believe that systems can tolerate network partitions
2. Designers believe isolating one side of the partition is enough

* NEAT: a network partitioning testing framework
* Tested 7 systems = 32 failures

20

NEtwork pArtitioning Testing framework (NEAT)

e Supports all types of network partitions Apache Ignite

* Simple API double locking failure

Network partition

clientl.createSemaphore(1)
sidel = aslList(S1, S2, clientl);
side2 = asList(S3, client2);

8

netPart = Partitioner.complete(sidel, side2);

assertTrue(clientl.sem_trywait());

acquire() acqwre(

s

assertFalse(client2.sem _trywait());

Partitioner.heal(netPart);

Clientl Cllent2

‘ Issue client operations ‘

NEAT design |
,&o?fv Client 1 || Client 2
="
 Orders client operations w”
* Injects and heals partitions -
* OpenFlow Test (,\o\“‘
* iptables Engin §¢”

"/ 1\

Server || Server || Server
1 2 3

/

‘ Run target system ‘

@
Net Partitioner | Client Driver

22

Testing with NEAT

* We tested 7 systems using NEAT

* Discovered 32 failures = 30 catastrophic .
. System # failures
e Confirmed: 12
found

ActiveMQ 2
Ceph 2
Ignite 15

Infinispan 1

Terracotta 9

MooseFS 2
DKron 1

23

Concluding remarks

* Further research is needed for network partition fault tolerance
Specially partial partitions

* Highlight the danger of using unreachability as an indicator of node crash
* |dentify ordering, timing, network characteristics to simplify testing

* |[dentify common pitfalls for developers and admins

* NEAT: network partitioning testing framework

https://dsl.uwaterloo.ca/projects/neat/

https://dsl.uwaterloo.ca/projects/neat/

